
Volume 12, number 3 INFORMATION PROCESSING LETTERS 13June1981

MYTHSABOUTTHEMUTUALEXCLUSIONPROBLEM

G.L. PETERSON
Drpartment of Computer Science, University of Rochester, Rochester, NY 14627, USA.

Received 13 January 1981; revised version received 30 March 1981

Parallelism, mutual exclusion

Recently in these pages appeared a report by Doran
and Thomas [2] which gave partially simplified ver-
sions of Dekker-like solutions to the two process mu-

tual exclusion problem with busy-waiting. This report
presents a truly simple solution to the problem and
attempts in a small way to dispel some myths that
seem to have arisen concerning the problem.

Briefly, the mutual exclusion problem for two pro-
cesses is to fmd sections of code (trying protocol,

exit protocol) for each of two asynchronous pro-
cesses to use when trying to enter and upon exiting
their designated critical sections. The protocols must
preserve mutual exclusion and not have deadlock or
lockout. Mutual exclusion means that both processes
can never be in their critical sections at the same time.
No deadlock or lockout means that no process waits
forever inside a protocol. More formal definitions can
be found in [S] and elsewhere.

The original solution due to Dekker is discussed at
length by Dijkstra in [l]. GE the many reformulations
given since, perhaps the best appears in 131. (Unfortu-
mtely the authors believe their correct solution is
incorrect.) The solutions of Doran and Thomas are .
slight improvements which eliminate the ‘loop inside
a loop’ structure of the previously published solutions.
The solution presented here has an extremely simple
structure and, as shown later, is easy to prove correct.

/*trying protocol for Pr */
Ql := true;
TURN := 1;
wait until not Q2 or TURN = 2;
Critical Section;
/*exit protocol for Pr *I
Ql := false.

The protocols of PI and P2 are given in Fig. 1.01
anr: 22 are initially false and TURN may start as either

1 or 2. (The busy wait loop ‘wait until Boolean’ is just
another way of saying “‘repeat/* empty statement/*
until Boolean”. The Boolean formula is not evaluated

atomically.)
As can be seen, the algorithm has a very simple

structure. This results in an easy proof of correctness.
First, neither process can be locked out. Consider PI,
it has only one wait loop, and assume it can be forced
to remain there forever. After a finite amount of time,
Pz will be doing one of three general things: not trying
to enter, waiting in its protocol, or repeatedly cycling
through its protocols. In the first case, Pr notes that
Q2 is false and proceeds. The second case is impossible
due to TURN being either 1 or 2; and one of the pro-
cesses will proceed. In the third case Pz will quickly
set TURN to 2 and never change it back to 1, ahowiig
PI to proceed.

If mutual exclusion were not preserved and both
processes could somehow end up in their critical sec-
tions at the same time, then we have Ql = Q2 = true.
Their tests in their wait loops just prior to entering
their critical sections at this point could not have been
at approximately the same time as TURN would have
been favorable to only one of the processes and the
other part of the test would have failed for both. This

/*trying protocol for P2 *I
Q2 := true?;
TURN := 2;
wc*it until not Ql or TURN = 1;
Critical Section;
/*exit protocol for P2*/
42 := false.

Fig. 1. A simple solution. 115

0 020-0190/8 1 /OOOO-OOOO/$O2 SO 0 North-Holland

Volume 12, number 3 INFORMATION PROCESSING LETTERS 13 June 1981

implies that one process first passed its test, and the
second did one or more assignments before passing its
test by seeing TURN favorable to itself. However, the
last assignment before testing sets TURN to an un-
favorable value, the test is doomed to fail, and mutual
exclusion is preserved.

Since the more complex algorithms naturally
require more complex proofs, one wonders whether
the prevalent attitude on ‘formal’ correctness “rgu_
ments is based on poorly structured algorithms. Per-
haps good parallel algorithms are not really all that
hard to understand. In any c3se, this solution puts an
end to the myth that the two process mutual exclu-
sion problem requires complex solutions with com-
plex proofs. (Dijkstra has recently devised a more for-
mal proof of mutual exclusion for this algorithm [7]
which, to this author, seems unnaturally complex for
such a simple algorithm.)

This algorithm does not appear ‘out of nowhere’,
but is in fact easily derivable from simple forms. Con-
sider the two primitive algoridlms in Fig. 2, both slight
modifications of ones appearing in [l]. Note that the
Gst has no exit protocols! Both algorithms preserve
mutual exclusion but both have deadlock. The first
only when one process does not cyclically try and tie
second only when they both are trying. The waiting
problems are disjoint and the correct algorithm is a
simple combination of the two. The myth of difficulty
of detivation is laid to rest.

TURN := 1; TURN := 2;
wait until TURN = 2; wait until TURN = 1;
Critical Section Critical Section

Ql := true; Q2 := jnre;
wait until not 42; wait until not Q 1;
Critical Section; Criticd Section;
01 := false. Q2 := false.

Fig. 2. Two primitive solutions.

Another possible myth is that Dekker’s solution ~3x1
be trivially modified to solve the n process case. The
algorithms known to the author actually require major
changes in form that result in entirely new algorithms,

even when n is two. The solution given here does have
a generalization to n processes. This algorithm (based
on a three process solution by L. Hrechanyk) is given
in Fig. 3. The two process solution is used repeatedly
in n - 1 levels to eliminate at least one process per
level until only one remains. The shared arrays
Q[l l .0 n] and TURN[l *** n - l] are initially 0 and 1,
respectively. The variables i, n and j are local to the
process with i containing the process number and n
the total number of processes. The correctness proof
of this solution is a straightforward generalization of
the two process proof and is left to the reader. How-
ever the algorithm requires 2n - 1 shared variables of
size n. Algorithms that need far fewer variables while
satisfying more constraints are well known [4-61.

/*protocols for Pr */
for j := 1 to n - 1 do
begin

Q[i] := j;
TURN[j] := i;
wait until (Vk # i, Q[k] < j) or TURN[j] # i

end;
Critical Section;
Q[i] := 0

Fig. 3. Simple n process solution.

References

[11 E.W. Dijkstra, Co-operating sequential processes, in: F.
Genuys, Ed., Programming Languages (Academic Press,
New York, 1968) 43 -112.

[2) R.W. Doran and L.K. Thomas, Variants of the software
to mutual exclusion, Information Processing Lett. 10

[3 J R.C. Halt, G.S. Graham, E.D. Lazowska and %A. Scott,
Structured Concurrent Programming with Operating Sys-
tems Applications (Addison-Wesley, Reading, MA, 1978).

[4] L. Lamport, The mutual exclusion problem, SRI Interna-
tional (1980).

[5 J G.L. Peterson, Concurrency and complexity, TR59, Dept.
of Computer Science, Univ. of Rochester (1979).

[6] G.L. Peterson, A new solution to Lamport’s concurrent
programming problem using small shared variables, Dept.
of Computer Science, Univ. of Rochester (1980).

[7] E.W. Dijkstra, An assertional proof of a program by G.L.
Peterson, EWD 779, Burroughs Corp. (1981).

116

