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Parallelism, mutual exclusion 

Recently in these pages appeared a report by Doran 
and Thomas [2] which gave partially simplified ver- 
sions of Dekker-like solutions to the two process mu- 

tual exclusion problem with busy-waiting. This report 
presents a truly simple solution to the problem and 
attempts in a small way to dispel some myths that 
seem to have arisen concerning the problem. 

Briefly, the mutual exclusion problem for two pro- 
cesses is to fmd sections of code (trying protocol, 

exit protocol) for each of two asynchronous pro- 
cesses to use when trying to enter and upon exiting 
their designated critical sections. The protocols must 
preserve mutual exclusion and not have deadlock or 
lockout. Mutual exclusion means that both processes 
can never be in their critical sections at the same time. 
No deadlock or lockout means that no process waits 
forever inside a protocol. More formal definitions can 
be found in [S] and elsewhere. 

The original solution due to Dekker is discussed at 
length by Dijkstra in [l]. GE the many reformulations 
given since, perhaps the best appears in 131. (Unfortu- 
mtely the authors believe their correct solution is 
incorrect.) The solutions of Doran and Thomas are . 
slight improvements which eliminate the ‘loop inside 
a loop’ structure of the previously published solutions. 
The solution presented here has an extremely simple 
structure and, as shown later, is easy to prove correct. 

/*trying protocol for Pr */ 
Ql := true; 
TURN := 1; 
wait until not Q2 or TURN = 2; 
Critical Section; 
/*exit protocol for Pr *I 
Ql := false. 

The protocols of PI and P2 are given in Fig. 1.01 
anr: 22 are initially false and TURN may start as either 

1 or 2. (The busy wait loop ‘wait until Boolean’ is just 
another way of saying “‘repeat/* empty statement/* 
until Boolean”. The Boolean formula is not evaluated 

atomically.) 
As can be seen, the algorithm has a very simple 

structure. This results in an easy proof of correctness. 
First, neither process can be locked out. Consider PI, 
it has only one wait loop, and assume it can be forced 
to remain there forever. After a finite amount of time, 
Pz will be doing one of three general things: not trying 
to enter, waiting in its protocol, or repeatedly cycling 
through its protocols. In the first case, Pr notes that 
Q2 is false and proceeds. The second case is impossible 
due to TURN being either 1 or 2; and one of the pro- 
cesses will proceed. In the third case Pz will quickly 
set TURN to 2 and never change it back to 1, ahowiig 
PI to proceed. 

If mutual exclusion were not preserved and both 
processes could somehow end up in their critical sec- 
tions at the same time, then we have Ql = Q2 = true. 
Their tests in their wait loops just prior to entering 
their critical sections at this point could not have been 
at approximately the same time as TURN would have 
been favorable to only one of the processes and the 
other part of the test would have failed for both. This 

/*trying protocol for P2 *I 
Q2 := true?; 
TURN := 2; 
wc*it until not Ql or TURN = 1; 
Critical Section; 
/*exit protocol for P2*/ 
42 := false. 

Fig. 1. A simple solution. 115 
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implies that one process first passed its test, and the 
second did one or more assignments before passing its 
test by seeing TURN favorable to itself. However, the 
last assignment before testing sets TURN to an un- 
favorable value, the test is doomed to fail, and mutual 
exclusion is preserved. 

Since the more complex algorithms naturally 
require more complex proofs, one wonders whether 
the prevalent attitude on ‘formal’ correctness “rgu_ 
ments is based on poorly structured algorithms. Per- 
haps good parallel algorithms are not really all that 
hard to understand. In any c3se, this solution puts an 
end to the myth that the two process mutual exclu- 
sion problem requires complex solutions with com- 
plex proofs. (Dijkstra has recently devised a more for- 
mal proof of mutual exclusion for this algorithm [7] 
which, to this author, seems unnaturally complex for 
such a simple algorithm.) 

This algorithm does not appear ‘out of nowhere’, 
but is in fact easily derivable from simple forms. Con- 
sider the two primitive algoridlms in Fig. 2, both slight 
modifications of ones appearing in [l]. Note that the 
Gst has no exit protocols! Both algorithms preserve 
mutual exclusion but both have deadlock. The first 
only when one process does not cyclically try and tie 
second only when they both are trying. The waiting 
problems are disjoint and the correct algorithm is a 
simple combination of the two. The myth of difficulty 
of detivation is laid to rest. 

TURN := 1; TURN := 2; 
wait until TURN = 2; wait until TURN = 1; 
Critical Section Critical Section 

Ql := true; Q2 := jnre; 
wait until not 42; wait until not Q 1; 
Critical Section; Criticd Section; 
01 := false. Q2 := false. 

Fig. 2. Two primitive solutions. 

Another possible myth is that Dekker’s solution ~3x1 
be trivially modified to solve the n process case. The 
algorithms known to the author actually require major 
changes in form that result in entirely new algorithms, 

even when n is two. The solution given here does have 
a generalization to n processes. This algorithm (based 
on a three process solution by L. Hrechanyk) is given 
in Fig. 3. The two process solution is used repeatedly 
in n - 1 levels to eliminate at least one process per 
level until only one remains. The shared arrays 
Q[l l .0 n] and TURN[l *** n - l] are initially 0 and 1, 
respectively. The variables i, n and j are local to the 
process with i containing the process number and n 
the total number of processes. The correctness proof 
of this solution is a straightforward generalization of 
the two process proof and is left to the reader. How- 
ever the algorithm requires 2n - 1 shared variables of 
size n. Algorithms that need far fewer variables while 
satisfying more constraints are well known [4-61. 

/*protocols for Pr */ 
for j := 1 to n - 1 do 
begin 

Q[i] := j; 
TURN[j] := i; 
wait until (Vk # i, Q[k] < j) or TURN[j] # i 

end; 
Critical Section; 
Q[i] := 0 

Fig. 3. Simple n process solution. 
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