
Lecture 2: Basic Graph

Algorithms

CS 539 / ECE 526

Distributed Algorithms

Some slides borrowed from Jennifer Welch’s class CSCE 668 at Texas A&M

Outline

• Simple broadcast using flooding

• Broadcast & convergecast assuming a

spanning tree

• Find a spanning tree

• Breadth-first search

2

The Broadcast Problem

• Distributed processes / nodes

• One node has a piece of information M

• Want to send M to all nodes

• Assumption today:

– Message passing

– Generic graph that is connected

– No link or node faults

– Sync or async 3

g h

a

b c

d e f

Flooding Broadcast (Async)

• Initially, broadcaster sends M to all neighbors

• Upon receiving M for the first time

Send to all neighbors

4

g h

a

b c

d e f

Flooding Broadcast (Lockstep Sync)

• Round 1: broadcaster sends M to all neighbors

• Round r > 1: if receiving M for the first time

in the last round

Send to all neighbors

5

g h

a

b c

d e f

Flooding Broadcast Correctness

• Graph connected à exist a path from

broadcaster à induction based on distance

• "Obvious”

6

g h

a

b c

d e f

Recall Efficiency Metrics

• Time complexity

– For synchrony: # of rounds (aka round complexity)

– Can be extended to asynchrony

• Communication complexity

– Can be measured in # of msgs or bits

• Computation and space complexity

– Not too different from non-distributed

– Often ignored, will discuss when important
7

Flooding Broadcast Efficiency

• Round complexity:

– D (graph diameter)

• Communication complexity:

– 2|E| msgs (E is the set of edges)

• 1 msg per direction per edge

– Do not send M back to those who

sent M to me?

• Useful in some cases, but not

always, e.g., complete graph 8

g h

a

b c

d e f

Outline

• Simple broadcast using flooding

• Broadcast & convergecast assuming a

spanning tree

• Find a spanning tree

• Breadth-first search

9

Spanning Tree

• Let G = (V, E) be a connected

undirected graph

• T = (V, E’) is a spanning tree of G

– E’ is a subset of E

– T is connected

– T has no cycles

10

g h

a

b c

d e f

Broadcast using a Spanning Tree

• Assume a spanning tree has been build, i.e.,

each node maintains parent & list of children

11

g h

a

b c

d e f

• Similar to flooding, send to all

children instead of all neighbors

• Correctness: same

• Round complexity: depth of tree

• Msg complexity: |V| - 1

– No longer has the factor 2

The Convergecast Problem

• Distributed processes / nodes

• Each node has a piece of information

• Want to collect all info at one node

– Variants: sum, max, …

• Assumption today: same

12

g h

a

b c

d e f

Convergecast via a Spanning Tree

• Dotted lines: non-tree edges

• Solid arrows: tree edges

13

g h

a

b c

d e f

g h

d e,g f,h

c,f,h
b,d,
e,g

13

Convergecast via a Spanning Tree

• Initially, each leaf node sends input to parent

• Upon receiving from all children

Send to parent f(m1, m2, …, mc)

(Showing async version here, sync version similar)

• Correctness: similar induction

• Efficiency: D rounds, |V| - 1 msgs

– Bits depend on shape of spanning tree in general

– (|V|-1)|M| for functions such as sum and max
14

Outline

• Simple broadcast using flooding

• Broadcast & convergecast assuming a

spanning tree

• Find a spanning tree from specified root

• Breadth-first search

15

Spanning Tree from Specified Root

• Can augment the flooding algorithm

– Record parent

– Reply to parent so parent can record children

16

g h

a

b c

d e f

Spanning Tree via Flooding (Sync)
• Round 1: root sends recruit msg to all neighbors

• Round r > 1:

If receiving a recruit msg in round r-1

If this is first time (ties broken arbitrarily)

record parent & send yes to parent
send recruit to all neighbors

If receiving yes from node j

Add j as a child

If receiving yes or no from all neighbors
Terminate

17

g h

a

b c

d e f

Spanning Tree via Flooding (Async)
• Initially: root sends recruit msg to all neighbors

• Upon receiving a recruit msg

If this is first time (ties never occur in async)

record parent & send yes to parent

send recruit to all neighbors

Upon receiving yes from node j

Add j as a child

18

g h

a

b c

d e f

Spanning Tree from Specified Root

• Can augment the flooding algorithm

– Record parent

– Reply to parent so parent can record children

• When do nodes terminate?

– Reply to non-parent so that it does

not wait forever

– Not a problem in sync, lack of yes = no

(observation from student)
19

g h

a

b c

d e f

Spanning Tree via Flooding (Async)
• Initially: root sends recruit msg to all neighbors

• Upon receiving a recruit msg

If this is first time (ties never occur in async)

record parent & send yes to parent

send recruit to all neighbors
Else:

reply with no

Upon receiving yes from node j

Add j as a child

Upon receiving yes or no from all neighbors
Terminate

20

g h

a

b c

d e f

Spanning Tree via Flooding (Async Detailed)
Initially: parent = NULL, children = {}, pending = neighbors;

for each j in neighbors
root sends “recruit” to j

Upon receiving “recruit” from j
If parent == NULL

parent = j
Send “yes” to j
for each j in neighbors:

Send “recruit” to j
Else: send “no” to j

Upon receiving “yes” from j
children = children U {j}
pending = pending \ {j}

Upon receiving “no”
pending = pending \ {j}

Upon pending = {}
Terminate

21

g h

a

b c

d e f

Spanning Tree via Flooding

• Correctness:

– Every node has at most one parent

– Every node has a parent

• Graph connected, induction on distance

– Node i considers j parent if and only if j considers i child

• Efficiency: same as flooding broadcast

– Round: Diameter of graph (+1)

– Communication: 2|E| msgs, O(|E|) bits

22

Spanning Tree via Flooding

• Extra nice property under sync: breadth-first search

• Does not hold under async

23

g h

a

b c

d e f

g h

a

b c

d e f

BFS in Async

• One idea: synchronized (yes, in async) “wavefronts”

– Root recruit distance-1 nodes (root’s neighbors)

– Wait for confirmation from all of these

– Recruit distance-2 nodes (root à dist-1 à dist-2)

– Convergecast confirmations back to root

– Recruit distance-3 nodes (root à dist-1 à dist-2 à dist 3)

– Convergecast confirmations back to root

– …

24

g h

a

b c

d e f

0

1

2

3

BFS in Async Efficiency

• One idea: synchronized (yes, in async) “wavefronts”

• Comm complexity:

– O(|E| + |V|*D)

– Each edge sees recruit once and yes/no once

– D broadcast / convergecast each costing (up to) V

• Round complexity:

– O(D2), D broadcast / convergecast each up to V rounds

• More accurately: 1 + 2 + 3 + … + D
25

g h

a

b c

d e f

0

1

2

3

Summary

• Broadcast & convergecast via a spanning

tree (sync and async)

• Find a spanning tree from specified root

using flooding (sync and async)

• Breadth-first search

– Easy in sync, need synchronization in async

26

