

# Lecture 3: Clock Synchronization

CS 539 / ECE 526

Distributed Algorithms

#### Announcements

- Problem Set 1 will be out tomorrow
  - One problem set every 2 weeks
  - -2~3 questions
  - Due in 1.5 weeks

 Office hour change: Monday 2-3 pm (and after class)

#### Outline

- Lockstep rounds too strong assumption
- How to enforce lockstep rounds?
  - -Today: In synchrony: clock synchronization
  - Next time: In asynchrony: synchronizers

#### Outline

- Model of clock synchronization
- No drift
- Lower bound
- From clock sync to lockstep rounds
- With drift

#### Hardware Clocks

- Each process equipped with a hardware clock
- We wish they were perfectly synchronized
  - As if a shared global clock

Unfortunately, unrealistic assumption ...

#### Hardware Clocks

Skew: clock value differences at a given time

$$-HC_i(t) = t + b_i$$

– Then, skew is  $|b_i - b_i|$ 

Drift: clock speed differences

$$-HC_i(t) = a_i * t + b_i$$

– Then, drift is a<sub>i</sub> / a<sub>j</sub>

## Adjusted Clocks

- Each process equipped with a hardware clock
  - ... whose reading may be far apart
- Adjusted clock:  $AC_i(t) = HC_i(t) + adj_i(t)$ 
  - May omit (t) when clear
- Clock synchronization: how to set adj<sub>i</sub>(t)
   such that skew is reduced to a small value

# Clock Synchronization

- Complete graph (can be relaxed)
- Bounded message delay within [d, D]
  - More general than usual where d = 0
- Bounded drift
  - We will start with zero drift
- No failure

#### Crucial Remark

- Synchrony = bounded delay + bounded drift
  - First lecture oversimplified
- If drift is unbounded, even bounded delay can "appear" unbounded

 Clock synchronization only possible under synchrony (will prove this today)

#### Outline

- Model of clock synchronization
- No drift
- Lower bound
- From clock sync to lockstep rounds
- With drift

- With 0 drift, synchronize once, good forever
- Simplest case: just two processes
- Proc 1 simply uses its hardware clock

$$-AC_1(t) = HC_1(t)$$
 (adj<sub>1</sub>(t) = 0)

- Proc 1 sends a clock reading to Proc 2
- How should Proc 2 adjust its clock?



- Proc 1 sets  $AC_1(t) = HC_1(t)$
- Proc 1 sends a clock reading 4:17
- Suppose msg delay ranges from d=1 to D=5
- Proc estimate current HC<sub>1</sub> to be 4:17 + 3
  - Assume the msg took median delay (minimize error)
- Proc 2 sets AC<sub>2</sub> to 4:20 (to try to match HC<sub>1</sub>)
  - Suppose Proc 2 received the msg at local clock 5:42
  - Then, it sets  $adj_2 = -1:22$



- Proc 1 sets  $AC_1(t) = HC_1(t)$
- Proc 1 sends  $R = HC_1(t_1)$  at time  $t_1$
- Proc 2 receives R at local clock HC<sub>2</sub>(t<sub>2</sub>)
  - Estimate  $HC_1(t_2) \approx R + (d+D)/2$
- Proc 2 sets AC<sub>2</sub>(t<sub>2</sub>) to estimated HC<sub>1</sub>(t<sub>2</sub>)
  - $adj_2 = AC_2(t_2) HC_2(t_2) = R + (d+D)/2 HC_2(t_2)$

Proc 2

$$R = HC_1(t_1)$$

- Skew Achieved?
- If msg delay is indeed median, perfect
- If msg delay is d or D, max skew
  - -D (d+D)/2 = (d+D)/2 d = (D-d)/2
  - I.e., half of uncertainty (Uncertainty U = D-d)
  - May be "obvious" but need a proper proof

Proc 1
$$R = HC_1(t_1)$$
Proc 2

- $AC_1(t) = HC_1(t)$
- $AC_2(t) = HC_2(t) + HC_1(t_1) + (d+D)/2 HC_2(t_2)$
- Let  $\delta$  be the actual msg delay
- $HC_1(t_2) = HC_1(t_1) + \delta$

• Skew = 
$$HC_2(t) - HC_1(t) + HC_1(t_1) - HC_2(t_2) + (d+D)/2$$
  
=  $HC_2(t) - HC_1(t) + HC_1(t_2) - HC_2(t_2) + (d+D)/2 - \delta$   
=  $(d+D)/2 - \delta$  (no drift)  
 $\leq (D-d)/2$  (max error in delay estimation)

Proc 1

 $R = HC_1(t_1)$ 

Proc 2

- Skew achieved?
- If msg delay is indeed median, perfect
- If msg delay is d or D, max skew U/2

- Can we do better than U/2?
- No! Impossible to clock sync to less than U/2

- Impossible to clock sync to less than U/2
  - Proof: consider an algo that syncs within E
  - Suppose all  $1 \rightarrow 2$  msgs incur delay d, all  $2 \rightarrow 1$  msgs D

$$AC_1 - E \leq AC_2 \leq AC_1 + E$$



- Impossible to clock sync to less than U/2
  - Proof: consider an algo that syncs within E
  - Suppose all  $1 \rightarrow 2$  msgs incur delay d, all  $2 \rightarrow 1$  msgs D
  - "Spring forward" Proc 1 hardware clock by U = D d



- Impossible to clock sync to less than U/2
  - Proof: consider an algo that syncs within E
  - Suppose all  $1 \rightarrow 2$  msgs incur delay d, all  $2 \rightarrow 1$  msgs D
  - "Spring forward" Proc 1 hardware clock by U = D d



- Impossible to clock sync to less than U/2
  - Proof: consider an algo that syncs within E
  - Suppose all  $1 \rightarrow 2$  msgs incur delay d, all  $2 \rightarrow 1$  msgs D
  - "Spring forward" Proc 1 hardware clock by U = D d
  - $-1 \rightarrow 2$  msgs incur delay D,  $2 \rightarrow 1$  msgs incur d



- Indistinguishable to both processes
  - · Hence, apply same adj in the two situations
  - $AC_2' = AC_2$   $AC_1' = AC_1 + U$
- Both are legal executions (respect msg delay bounds)
  - $AC_2 \le AC_1 + E$   $AC_1' \le AC_2' + E$



• 
$$AC_2' = AC_2$$
  $AC_1' = AC_1 + U$ 

• 
$$AC_2 \le AC_1 + E$$
  $AC_1' \le AC_2' + E$ 

$$- AC_1 + U \le AC_2 + E$$
$$\le (AC_1 + E) + E$$

 $- E \ge U/2$ 



## Zero Drift, Many Processes

- With 0 drift, synchronize once, good forever
- Two processes: sync within U/2, best possible
- Many processes: want  $|AC_i AC_j| \le E$  for all i, j
  - Simple algo exists for sync within U

- Let one proc be reference, and every process runs 2-proc algo with reference
  - Max skew ≤ U/2 + U/2 (triangle inequality)
- Can we do better?

- Impossible to clock sync to less than U(1-1/n)
  - Proof: consider an algo that syncs within E
  - Suppose all "downward" msgs incur delay d, and all "upward" msgs incur delay D



- Lemma:  $AC_i \le AC_{i+1} U + E$ 
  - "Spring forward" processes 1 through i
  - Switch downward and upward delays



- Lemma:  $AC_i \leq AC_{i+1} U + E$ 
  - Indistinguishable:  $AC_{i+1}' = AC_{i+1}$   $AC_i' = AC_i + U$
  - Clock sync algo:  $AC_i' \le AC'_{i+1} + E$



• Lemma:  $AC_i \le AC_{i+1} - U + E$ 

• 
$$AC_n - E \le AC_1$$

$$AC_1 \le AC_2 - U + E$$

$$\le AC_3 - 2U + 2E$$

. . .

$$\leq AC_n - (n-1)U + (n-1)E$$

•  $(n-1)U \le nE \rightarrow E \ge U(1-1/n)$ 

## Lower Bound for Clock Sync

- Impossible to clock sync to less than U(1-1/n)
  - Might as well use the simple algo to sync to U
  - Does not tolerate reference failure (topic for later)

- Impossible to clock sync under asynchrony
  - Essentially, U is infinite

#### Outline

- Model of clock synchronization
- No drift
- Lower bound
- From clock sync to lockstep rounds
- With drift

## **Enforce Lockstep Rounds**

- Simple algo to sync within U
- Make each round U + D
  - "Dragging" processes' msgs still considered in time
  - "Rushing" processes' msgs need to be buffered
  - Make it 2D if d = 0



#### Outline

- Model of clock synchronization
- No drift
- Lower bound
- From clock sync to lockstep rounds
- With drift

# Clock Sync with Drift

Drift must be bounded, otherwise == async

$$\frac{HC_{i}(t_{2}) - HC_{i}(t_{1})}{HC_{i}(t_{2}) - HC_{i}(t_{1})} \leq 1 + r$$

- Idea: sync periodically, every T
  - Immediately after one sync, skew is at most U
  - After T, drift by at most rT
  - Skew at the end of a period is at most U + rT

# Lockstep with Drift

- Make each round U + rT + D and sync every T
- One subtlety: time skipping



# Lockstep with Drift

- Make each round U + rT + D and sync every T
- One subtlety: time skipping
  - Proc 2 changes from dragging to rushing
  - Proc 2 "misses" the beginning of yellow round



# Lockstep with Drift

- Make each round U + rT + D and sync every T
- One subtlety: time/round skipping
- Solution: add buffer time at the end of each period during which rounds do not advance



# Summary

- Algorithm to sync clocks within U
  - U/2 for two processes, best possible
  - Almost optimal due to U(1-1/n) lower bound
  - Periodic sync to handle skew
- Can now enforce the lockstep abstraction using longer rounds