Lecture 3:
 Clock Synchronization

CS 539 / ECE 526
Distributed Algorithms

Announcements

- Problem Set 1 will be out tomorrow
-One problem set every 2 weeks
-2~3 questions
-Due in 1.5 weeks
- Office hour change: Monday 2-3 pm (and after class)

Outline

- Lockstep rounds too strong assumption
- How to enforce lockstep rounds?
-Today: In synchrony: clock synchronization
-Next time: In asynchrony: synchronizers

Outline

- Model of clock synchronization
- No drift
- Lower bound
- From clock sync to lockstep rounds
- With drift

Hardware Clocks

- Each process equipped with a hardware clock
- We wish they were perfectly synchronized
- As if a shared global clock
- Unfortunately, unrealistic assumption ...

Hardware Clocks

- Skew: clock value differences at a given time
$-\mathrm{HC}_{\mathrm{i}}(\mathrm{t})=\mathrm{t}+\mathrm{b}_{\mathrm{i}}$
- Then, skew is $\left|b_{i}-b_{j}\right|$
- Drift: clock speed differences
$-\mathrm{HC}_{\mathrm{i}}(\mathrm{t})=\mathrm{a}_{\mathrm{i}}{ }^{*} \mathrm{t}+\mathrm{b}_{\mathrm{i}}$
- Then, drift is $\mathrm{a}_{\mathrm{i}} / \mathrm{a}_{\mathrm{j}}$

Adjusted Clocks

- Each process equipped with a hardware clock - ... whose reading may be far apart
- Adjusted clock: $\mathrm{AC}_{\mathrm{i}}(\mathrm{t})=\mathrm{HC}_{\mathrm{i}}(\mathrm{t})+\operatorname{adj}_{\mathrm{i}}(\mathrm{t})$
- May omit (t) when clear
- Clock synchronization: how to set $\operatorname{adj}_{\mathrm{j}}(\mathrm{t})$ such that skew is reduced to a small value

Clock Synchronization

- Complete graph (can be relaxed)
- Bounded message delay within [d, D]
- More general than usual where $\mathrm{d}=0$
- Bounded drift
- We will start with zero drift
- No failure

Crucial Remark

- Synchrony = bounded delay + bounded drift - First lecture oversimplified
- If drift is unbounded, even bounded delay can "appear" unbounded
- Clock synchronization only possible under synchrony (will prove this today)

Outline

- Model of clock synchronization
- No drift
- Lower bound
- From clock sync to lockstep rounds
- With drift

Zero Drift, Two Processes

- With 0 drift, synchronize once, good forever
- Simplest case: just two processes
- Proc 1 simply uses its hardware clock
$-\mathrm{AC}_{1}(\mathrm{t})=\mathrm{HC}_{1}(\mathrm{t}) \quad\left(\operatorname{adj}_{1}(\mathrm{t})=0\right)$
- Proc 1 sends a clock reading to Proc 2
- How should Proc 2 adjust its clock?

Proc 1
Proc 2

Zero Drift, Two Processes

- Proc 1 sets $\mathrm{AC}_{1}(\mathrm{t})=\mathrm{HC}_{1}(\mathrm{t})$
- Proc 1 sends a clock reading 4:17
- Suppose msg delay ranges from $d=1$ to $D=5$
- Proc estimate current HC_{1} to be 4:17+3
- Assume the msg took median delay (minimize error)
- Proc 2 sets AC_{2} to 4:20 (to try to match HC_{1})
- Suppose Proc 2 received the msg at local clock 5:42
- Then, it sets $\operatorname{adj}_{2}=-1: 22$

Proc 1
Proc 2
4:17

Zero Drift, Two Processes

- Proc 1 sets $\mathrm{AC}_{1}(\mathrm{t})=\mathrm{HC}_{1}(\mathrm{t})$
- Proc 1 sends $\mathrm{R}=\mathrm{HC}_{1}\left(\mathrm{t}_{1}\right)$ at time t_{1}
- Proc 2 receives R at local clock $\mathrm{HC}_{2}\left(\mathrm{t}_{2}\right)$
- Estimate $\mathrm{HC}_{1}\left(\mathrm{t}_{2}\right) \approx \mathrm{R}+(\mathrm{d}+\mathrm{D}) / 2$
- Proc 2 sets $\mathrm{AC}_{2}\left(\mathrm{t}_{2}\right)$ to estimated $\mathrm{HC}_{1}\left(\mathrm{t}_{2}\right)$

$$
-\mathrm{adj}_{2}=\mathrm{AC}_{2}\left(\mathrm{t}_{2}\right)-\mathrm{HC}_{2}\left(\mathrm{t}_{2}\right)=\mathrm{R}+(\mathrm{d}+\mathrm{D}) / 2-\mathrm{HC}_{2}\left(\mathrm{t}_{2}\right)
$$

Proc 1
Proc 2

$$
\mathrm{R}=\mathrm{HC}_{1}\left(\mathrm{t}_{1}\right)
$$

Zero Drift, Two Processes

- Skew Achieved?
- If msg delay is indeed median, perfect
- If msg delay is d or D, max skew
$-\mathrm{D}-(\mathrm{d}+\mathrm{D}) / 2=(\mathrm{d}+\mathrm{D}) / 2-\mathrm{d}=(\mathrm{D}-\mathrm{d}) / 2$
- I.e., half of uncertainty (Uncertainty $U=D-d$)
- May be "obvious" but need a proper proof

Proc 1
Proc 2

$$
\mathrm{R}=\mathrm{HC}_{1}\left(\mathrm{t}_{1}\right)
$$

Zero Drift, Two Processes

- $\mathrm{AC}_{1}(\mathrm{t})=\mathrm{HC}_{1}(\mathrm{t})$
- $\mathrm{AC}_{2}(\mathrm{t})=\mathrm{HC}_{2}(\mathrm{t})+\mathrm{HC}_{1}\left(\mathrm{t}_{1}\right)+(\mathrm{d}+\mathrm{D}) / 2-\mathrm{HC}_{2}\left(\mathrm{t}_{2}\right)$
- Let δ be the actual msg delay
- $\mathrm{HC}_{1}\left(\mathrm{t}_{2}\right)=\mathrm{HC}_{1}\left(\mathrm{t}_{1}\right)+\delta$
- Skew $=\mathrm{HC}_{2}(\mathrm{t})-\mathrm{HC}_{1}(\mathrm{t})+\mathrm{HC}_{1}\left(\mathrm{t}_{1}\right)-\mathrm{HC}_{2}\left(\mathrm{t}_{2}\right)+(\mathrm{d}+\mathrm{D}) / 2$
$=\mathrm{HC}_{2}(\mathrm{t})-\mathrm{HC}_{1}(\mathrm{t})+\mathrm{HC}_{1}\left(\mathrm{t}_{2}\right)-\mathrm{HC}_{2}\left(\mathrm{t}_{2}\right)+(\mathrm{d}+\mathrm{D}) / 2-\delta$
$=(\mathrm{d}+\mathrm{D}) / 2-\delta \quad$ (no drift)
$\leq(\mathrm{D}-\mathrm{d}) / 2 \quad$ (max error in delay estimation)
Proc 1

Proc 2

$$
\mathrm{R}=\mathrm{HC}_{1}\left(\mathrm{t}_{1}\right)
$$

Zero Drift, Two Processes

- Skew achieved?
- If msg delay is indeed median, perfect
- If msg delay is d or D, max skew U/2
- Can we do better than U/2?
- No! Impossible to clock sync to less than U/2

Lower Bound for Two Processes

- Impossible to clock sync to less than U/2
- Proof: consider an algo that syncs within E
- Suppose all $1 \rightarrow 2$ msgs incur delay d, all $2 \rightarrow 1$ msgs D

$$
\mathrm{AC}_{1}-\mathrm{E} \leq \mathrm{AC}_{2} \leq \mathrm{AC}_{1}+\mathrm{E}
$$

Lower Bound for Two Processes

- Impossible to clock sync to less than U/2
- Proof: consider an algo that syncs within E
- Suppose all $1 \rightarrow 2$ msgs incur delay d, all $2 \rightarrow 1$ msgs D
- "Spring forward" Proc 1 hardware clock by U = D - d

Proc 1		1				4
Proc 2						
roc 2	0		2	3	4	

Lower Bound for Two Processes

- Impossible to clock sync to less than U/2
- Proof: consider an algo that syncs within E
- Suppose all $1 \rightarrow 2$ msgs incur delay d, all $2 \rightarrow 1$ msgs D
- "Spring forward" Proc 1 hardware clock by U = D - d

Proc 1'	0	1	2	3	4

Lower Bound for Two Processes

- Impossible to clock sync to less than U/2
- Proof: consider an algo that syncs within E
- Suppose all $1 \rightarrow 2$ msgs incur delay d, all $2 \rightarrow 1$ msgs D
- "Spring forward" Proc 1 hardware clock by U = D - d
$-1 \rightarrow 2$ msgs incur delay $D, 2 \rightarrow 1$ msgs incur d

Lower Bound for Two Processes

- Indistinguishable to both processes
- Hence, apply same adj in the two situations
- $\mathrm{AC}_{2}{ }^{\prime}=\mathrm{AC}_{2} \quad \mathrm{AC}_{1}{ }^{\prime}=\mathrm{AC}_{1}+\mathrm{U}$
- Both are legal executions (respect msg delay bounds) - $\mathrm{AC}_{2} \leq \mathrm{AC}_{1}+\mathrm{E} \quad \mathrm{AC}_{1}{ }^{\prime} \leq \mathrm{AC}_{2}{ }^{\prime}+\mathrm{E}$

Lower Bound for Two Processes

$$
\begin{aligned}
& \cdot{ }^{A C_{2}^{\prime}}=A C_{2} \quad A C_{1}{ }^{\prime}=A C_{1}+U \\
& \cdot \\
& \cdot A C_{2} \leq A C_{1}+E \quad A C_{1}^{\prime} \leq A C_{2}^{\prime}+E \\
& -A C_{1}+U \leq A C_{2}+E \\
& \\
& \quad \leq\left(A C_{1}+E\right)+E \\
& -E \geq U / 2
\end{aligned}
$$

Zero Drift, Many Processes

- With 0 drift, synchronize once, good forever
- Two processes: sync within U/2, best possible
- Many processes: want $\left|A C_{i}-A C_{j}\right| \leq E$ for all i, j
- Simple algo exists for sync within U
- Let one proc be reference, and every process runs 2-proc algo with reference
- Max skew $\leq \mathrm{U} / 2+\mathrm{U} / 2$ (triangle inequality)
-Can we do better?

Lower Bound for n Processes

- Impossible to clock sync to less than $\mathrm{U}(1-1 / n)$
- Proof: consider an algo that syncs within E
- Suppose all "downward" msgs incur delay d, and all "upward" msgs incur delay D

Lower Bound for n Processes

- Lemma: $\mathrm{AC}_{\mathrm{i}} \leq \mathrm{AC}_{\mathrm{i}+1}-\mathrm{U}+\mathrm{E}$
- "Spring forward" processes 1 through i
- Switch downward and upward delays

Lower Bound for n Processes

- Lemma: $\mathrm{AC}_{\mathrm{i}} \leq \mathrm{AC}_{\mathrm{i}+1}-\mathrm{U}+\mathrm{E}$
- Indistinguishable: $\mathrm{AC}_{\mathrm{i}+1}{ }^{\prime}=\mathrm{AC}_{\mathrm{i}+1} \quad \mathrm{AC}_{\mathrm{i}}{ }^{\prime}=\mathrm{AC}_{\mathrm{i}}+\mathrm{U}$
- Clock sync algo: $\mathrm{AC}^{\prime}{ }^{\prime} \leq \mathrm{AC}^{\prime}{ }_{i+1}+E$

Lower Bound for n Processes

- Lemma: $\mathrm{AC}_{\mathrm{i}} \leq \mathrm{AC}_{\mathrm{i}+1}-\mathrm{U}+\mathrm{E}$
- $\mathrm{AC}_{\mathrm{n}}-\mathrm{E} \leq \mathrm{AC}_{1}$
- $\mathrm{AC}_{1} \leq \mathrm{AC}_{2}-\mathrm{U}+\mathrm{E}$
$\leq \mathrm{AC}_{3}-2 \mathrm{U}+2 \mathrm{E}$
$\leq A C_{n}-(n-1) U+(n-1) E$
- $(\mathrm{n}-1) \mathrm{U} \leq \mathrm{nE} \rightarrow \mathrm{E} \geq \mathrm{U}(1-1 / \mathrm{n})$

Lower Bound for Clock Sync

- Impossible to clock sync to less than $\mathrm{U}(1-1 / n)$
- Might as well use the simple algo to sync to U
- Does not tolerate reference failure (topic for later)
- Impossible to clock sync under asynchrony
- Essentially, U is infinite

Outline

- Model of clock synchronization
- No drift
- Lower bound
- From clock sync to lockstep rounds
- With drift

Enforce Lockstep Rounds

- Simple algo to sync within U
- Make each round U + D
- "Dragging" processes' msgs still considered in time - "Rushing" processes' msgs need to be buffered
- Make it 2D if $d=0$

Proc 1

Proc 2

Outline

- Model of clock synchronization
- No drift
- Lower bound
- From clock sync to lockstep rounds
- With drift

Clock Sync with Drift

- Drift must be bounded, otherwise == async

$$
\frac{\mathrm{HC}_{\mathrm{i}}\left(\mathrm{t}_{2}\right)-\mathrm{HC}_{\mathrm{i}}\left(\mathrm{t}_{1}\right)}{\mathrm{HC}_{\mathrm{j}}\left(\mathrm{t}_{2}\right)-\mathrm{HC}_{\mathrm{j}}\left(\mathrm{t}_{1}\right)} \leq 1+\mathrm{r}
$$

- Idea: sync periodically, every T
- Immediately after one sync, skew is at most U
- After T, drift by at most rT
- Skew at the end of a period is at most $U+r T$

Lockstep with Drift

- Make each round $U+r T+D$ and sync every T
- One subtlety: time skipping

Lockstep with Drift

- Make each round $U+r T+D$ and sync every T
- One subtlety: time skipping
- Proc 2 changes from dragging to rushing
- Proc 2 "misses" the beginning of yellow round

Proc 1

Proc 2 U+rT

Lockstep with Drift

- Make each round $U+r T+D$ and sync every T
- One subtlety: time/round skipping
- Solution: add buffer time at the end of each period during which rounds do not advance

Summary

- Algorithm to sync clocks within U
- U/2 for two processes, best possible
- Almost optimal due to $\mathrm{U}(1-1 / n)$ lower bound
- Periodic sync to handle skew
- Can now enforce the lockstep abstraction using longer rounds

