
Lecture 3:

Clock Synchronization

CS 539 / ECE 526

Distributed Algorithms

Announcements

• Problem Set 1 will be out tomorrow

–One problem set every 2 weeks

–2~3 questions

–Due in 1.5 weeks

• Office hour change: Monday 2-3 pm

(and after class)
2

Outline

• Lockstep rounds too strong assumption

• How to enforce lockstep rounds?

–Today: In synchrony: clock synchronization

–Next time: In asynchrony: synchronizers

3

Outline

•Model of clock synchronization

• No drift

• Lower bound

• From clock sync to lockstep rounds

•With drift

4

Hardware Clocks

• Each process equipped with a hardware clock

• We wish they were perfectly synchronized

– As if a shared global clock

• Unfortunately, unrealistic assumption …

5

Hardware Clocks

• Skew: clock value differences at a given time

– HCi(t) = t + bi

– Then, skew is |bi - bj|

• Drift: clock speed differences

– HCi(t) = ai * t + bi

– Then, drift is ai / aj

6

Adjusted Clocks

• Each process equipped with a hardware clock

– … whose reading may be far apart

• Adjusted clock: ACi(t) = HCi(t) + adji(t)

– May omit (t) when clear

• Clock synchronization: how to set adji(t)

such that skew is reduced to a small value

7

Clock Synchronization

• Complete graph (can be relaxed)

• Bounded message delay within [d, D]

– More general than usual where d = 0

• Bounded drift

– We will start with zero drift

• No failure

8

Crucial Remark

• Synchrony = bounded delay + bounded drift

– First lecture oversimplified

• If drift is unbounded, even bounded delay

can ”appear” unbounded

• Clock synchronization only possible under

synchrony (will prove this today)

9

Outline

•Model of clock synchronization

• No drift

• Lower bound

• From clock sync to lockstep rounds

•With drift

10

Zero Drift, Two Processes
• With 0 drift, synchronize once, good forever

• Simplest case: just two processes

• Proc 1 simply uses its hardware clock
– AC1(t) = HC1(t) (adj1(t) = 0)

• Proc 1 sends a clock reading to Proc 2

• How should Proc 2 adjust its clock?

11

Proc 1

Proc 2

Zero Drift, Two Processes
• Proc 1 sets AC1(t) = HC1(t)

• Proc 1 sends a clock reading 4:17
• Suppose msg delay ranges from d=1 to D=5
• Proc estimate current HC1 to be 4:17 + 3

– Assume the msg took median delay (minimize error)

• Proc 2 sets AC2 to 4:20 (to try to match HC1)
– Suppose Proc 2 received the msg at local clock 5:42

– Then, it sets adj2 = -1:22

12

Proc 1

Proc 2
4:17

Zero Drift, Two Processes
• Proc 1 sets AC1(t) = HC1(t)

• Proc 1 sends R = HC1(t1) at time t1
• Proc 2 receives R at local clock HC2(t2)
– Estimate HC1(t2) ≈ R + (d+D)/2

• Proc 2 sets AC2(t2) to estimated HC1(t2)
– adj2 = AC2(t2) - HC2(t2) = R + (d+D)/2 - HC2(t2)

13

Proc 1

Proc 2
R = HC1(t1)

Zero Drift, Two Processes
• Skew Achieved?

• If msg delay is indeed median, perfect

• If msg delay is d or D, max skew
– D – (d+D)/2 = (d+D)/2 – d = (D-d)/2
– I.e., half of uncertainty (Uncertainty U = D-d)
– May be “obvious” but need a proper proof

14

Proc 1

Proc 2
R = HC1(t1)

Zero Drift, Two Processes
• AC1(t) = HC1(t)

• AC2(t) = HC2(t) + HC1(t1) + (d+D)/2 - HC2(t2)
• Let 𝛿 be the actual msg delay

• HC1(t2) = HC1(t1) + 𝛿

• Skew = HC2(t) - HC1(t) + HC1(t1) - HC2(t2) + (d+D)/2

= HC2(t) - HC1(t) + HC1(t2) - HC2(t2) + (d+D)/2 - 𝛿

= (d+D)/2 - 𝛿 (no drift)

≤ (D-d)/2 (max error in delay estimation)

15

Proc 1

Proc 2
R = HC1(t1)

Zero Drift, Two Processes
• Skew achieved?

• If msg delay is indeed median, perfect

• If msg delay is d or D, max skew U/2

• Can we do better than U/2?
• No! Impossible to clock sync to less than U/2

16

Lower Bound for Two Processes
• Impossible to clock sync to less than U/2
– Proof: consider an algo that syncs within E

– Suppose all 1à2 msgs incur delay d, all 2à1 msgs D

AC1 - E ≤ AC2 ≤ AC1 + E

17

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

Lower Bound for Two Processes
• Impossible to clock sync to less than U/2
– Proof: consider an algo that syncs within E

– Suppose all 1à2 msgs incur delay d, all 2à1 msgs D

– “Spring forward” Proc 1 hardware clock by U = D - d

18

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

Lower Bound for Two Processes
• Impossible to clock sync to less than U/2
– Proof: consider an algo that syncs within E

– Suppose all 1à2 msgs incur delay d, all 2à1 msgs D

– “Spring forward” Proc 1 hardware clock by U = D - d

19

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

Proc 1’

Proc 2’ 0 1 2 3 4

0 1 2 3 4

Lower Bound for Two Processes
• Impossible to clock sync to less than U/2
– Proof: consider an algo that syncs within E

– Suppose all 1à2 msgs incur delay d, all 2à1 msgs D

– “Spring forward” Proc 1 hardware clock by U = D - d

– 1à2 msgs incur delay D, 2à1 msgs incur d

20

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4Proc 1’

Proc 2’ 0 1 2 3 4

……

Lower Bound for Two Processes
– Indistinguishable to both processes

• Hence, apply same adj in the two situations

• AC2’ = AC2 AC1’ = AC1 + U

– Both are legal executions (respect msg delay bounds)

• AC2 ≤ AC1 + E AC1’ ≤ AC2’ + E

21

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4Proc 1’

Proc 2’ 0 1 2 3 4

……

Lower Bound for Two Processes
• AC2’ = AC2 AC1’ = AC1 + U

• AC2 ≤ AC1 + E AC1’ ≤ AC2’ + E

– AC1 + U ≤ AC2 + E

≤ (AC1 + E) + E

– E ≥ U/2

22

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4Proc 1’

Proc 2’ 0 1 2 3 4

……

Zero Drift, Many Processes
• With 0 drift, synchronize once, good forever

• Two processes: sync within U/2, best possible

• Many processes: want |ACi – ACj| ≤ E for all i, j
– Simple algo exists for sync within U

• Let one proc be reference, and every process
runs 2-proc algo with reference
– Max skew ≤ U/2 + U/2 (triangle inequality)

• Can we do better?

23

Lower Bound for n Processes
• Impossible to clock sync to less than U(1-1/n)
– Proof: consider an algo that syncs within E

– Suppose all “downward” msgs incur delay d, and all
“upward” msgs incur delay D

24

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

……

Lower Bound for n Processes
• Lemma: ACi ≤ ACi+1 - U + E
– “Spring forward” processes 1 through i

– Switch downward and upward delays

25

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

……

0 1 2 3 4Proc 1’
……

Lower Bound for n Processes
• Lemma: ACi ≤ ACi+1 - U + E
– Indistinguishable: ACi+1’ = ACi+1 ACi’ = ACi + U

– Clock sync algo: ACi’ ≤ AC’i+1 + E

26

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

……

0 1 2 3 4Proc 1’
……

Lower Bound for n Processes
• Lemma: ACi ≤ ACi+1 - U + E

• ACn - E ≤ AC1

• AC1 ≤ AC2 - U + E

≤ AC3 - 2U + 2E

…

≤ ACn - (n–1)U + (n–1)E

• (n–1)U ≤ nE à E ≥ U(1-1/n)

27

Lower Bound for Clock Sync
• Impossible to clock sync to less than U(1-1/n)
– Might as well use the simple algo to sync to U

– Does not tolerate reference failure (topic for later)

• Impossible to clock sync under asynchrony
– Essentially, U is infinite

28

Outline

•Model of clock synchronization

• No drift

• Lower bound

• From clock sync to lockstep rounds

•With drift

29

Enforce Lockstep Rounds
• Simple algo to sync within U

• Make each round U + D
– ”Dragging” processes’ msgs still considered in time

– “Rushing” processes’ msgs need to be buffered

– Make it 2D if d = 0

30

Proc 1

Proc 2

______________________________U

D

Outline

•Model of clock synchronization

• No drift

• Lower bound

• From clock sync to lockstep rounds

•With drift

31

Clock Sync with Drift
• Drift must be bounded, otherwise == async

HCi(t2) – HCi(t1)

HCj(t2) – HCj(t1)

• Idea: sync periodically, every T
– Immediately after one sync, skew is at most U

– After T, drift by at most rT

– Skew at the end of a period is at most U + rT

32

≤ 1+r

Lockstep with Drift
• Make each round U + rT + D and sync every T

• One subtlety: time skipping

33

Proc 1

Proc 2

______________________________U+rT

D

Lockstep with Drift
• Make each round U + rT + D and sync every T

• One subtlety: time skipping
– Proc 2 changes from dragging to rushing

– Proc 2 “misses” the beginning of yellow round

34

Proc 1

Proc 2

________________U+rT

D

Lockstep with Drift
• Make each round U + rT + D and sync every T

• One subtlety: time/round skipping

• Solution: add buffer time at the end of each
period during which rounds do not advance

35

Proc 1

Proc 2

________________U+rT

D

Summary

• Algorithm to sync clocks within U

– U/2 for two processes, best possible

– Almost optimal due to U(1-1/n) lower bound

– Periodic sync to handle skew

• Can now enforce the lockstep abstraction

using longer rounds

36

