
Lecture 4: Synchronizers

CS 539 / ECE 526

Distributed Algorithms

Outline

• Lockstep rounds too strong assumption

• How to enforce lockstep rounds?

– In synchrony: clock synchronization

–Today: In asynchrony: synchronizers

2

Synchronizers

• Enforce lockstep rounds in asynchrony

•Message passing

• Generic graph

• No failure

3

Outline

• A simple local synchronizer

• Awerbuch’s framework

–An alternative local synchronizer

–A global synchronizer

–Hybrid local/global synchronizer

• Fault tolerance of synchronizers

• Correctness of local synchronizers

4

A Simple Synchronizer

• Idea: a process can send round-(r+1) msgs

once it receives all round-r msgs

(all msgs are marked with round number)

– Having received round-(r+1) msgs before that?

• Simply delay processing those

• Similarly, could be too earlier for other processes,

but others can also just buffer round-(r+1) msg

5

A Simple Synchronizer

• Idea: a process can send round-(r+1) msgs

once it receives all round-r msgs

(all msgs are marked with round number)

• Send “NoMsg, r” if there is nothing to send

– Do this separately for every link

• Move to round r+1 upon receiving round-r

msgs (or NoMsg) from ALL neighbors

6

A Simple Synchronizer

• This synchronizer is local

• Nearby nodes are off by 1 round at most

– Node i is waiting for round-r msgs

– Node i has not sent its round-(r+1) msg or NoMsg

– Node i’s neighbors cannot start round r+2

• Far-apart nodes may be off by many rounds

7

A Simple Synchronizer

• Far-apart nodes may be off by many rounds

8

A -------- B -------- C -------- D -------- E

Synchronizer Correctness

• Far-apart nodes may be off by many rounds

• Is this really equivalent to lockstep rounds?

• For external observers, no!

– Also for lockstep using clock synchronization

• For the nodes themselves?

– Feels like it, but how do we formally prove it? Not

trivial, will come back to it

9

A Simple Synchronizer: Efficiency

• Transforms a lockstep algo into an async one

• Efficiency: measured by blowup

• Round blowup: 1x (i.e., none)

• Message blowup

– M to R*|E| where R is the lockstep round complexity

• Good for rounds, potentially bad for comm

– When is communication blowup small?

10

Outline

• A simple local synchronizer

• Awerbuch’s framework

–An alternative local synchronizer

–A global synchronizer

–Hybrid local/global synchronizer

• Fault tolerance of synchronizers

• Correctness of local synchronizers

11

Awerbuch’s Synchronizers

• A general class of synchronizers

• Do not send NoMsg. ACK every msg.

• A node is “done sending in round r” if all its

round-r msgs have been ack’ed

• If ALL neighbors are “done sending in round r”,

a node has received all round-r msgs

– Hence, can send round r+1 msgs

– Question left: how to communicate “done sending” 12

Awerbuch’s Synchronizers

• Only question left: how to communicate

“done sending in round r”

• Option 1: simply send to all neighbors

– Called Alpha Synchronizer by Awerbuch

• This gives an alternative local synchronizer

– Round and communication blowup?

– No advantage over the simpler one, but helpful for

reasoning about more complex synchronizers
13

Awerbuch’s Synchronizers

• Only question left: how to communicate

“done sending in round r”

• Option 1 (alpha): simply send to all neighbors

• Option 2 (beta): via a leader and spanning tree

– Convergecast “done sending r” to root / leader

– Leader broadcasts “start round r+1”

14

Awerbuch’s Beta Synchronizer

• A global synchronizer

• No process sends round-(r+1) msg until ALL

round-r msgs (from/to all procs) are received

• Correctness straightforward / by definition

15

Beta Synchronizer Efficiency

• Round blowup

– R to R*(2+2D) where D is the depth of spanning tree

– But D could be |V| in async if unlucky

• Message blowup

– M to 2M + 2*R*|V|

– 2M from acks, rest are convergecast & broadcast

16

Awerbuch’s Synchronizers

• Only question left: how to communicate

“done sending in round r”

• Option 1 (alpha): simply send to all neighbors

• Option 2 (beta): via a leader and spanning tree

• Option 3 (gamma): tradeoff between 1 and 2

17

Awerbuch’s Gamma Synchronizer

• A spanning forest (multiple spanning trees)

– E.g., b -> a/d, e -> f -> c, g -> h

• First, beta synchronizer within each tree

• Then, alpha synchronizer

among roots

– Root: “done r” (for my tree)

– Go to round r+1 if my tree and all

neighboring trees send “done r”
18

g h

a

b c

d e f

Awerbuch’s Gamma Synchronizer

• Which trees are neighboring trees?

– If and only if any of their members are in contact

• Is it OK to have no link between b and g?

– OK in this example

– Not OK if d --- g (or a --- h)

19

g h

a

b c

d e f

Awerbuch’s Gamma Synchronizer

• Correctness

– All my neighbors are in same or neighboring trees

– My root broadcasts “start round r+1” if it receives

“done r” from our entire tree (via convergecast)

AND all neighboring roots

• Former takes care of my neighbors in same tree

• Latter takes care of my neighbors in neighboring

trees

20

Awerbuch’s Gamma Synchronizer

• Efficiency depends on forest structure

• Example: k trees of size n/k, roots form clique

– Round blowup: depth of tree, so O(n/k)

– Msg blowup: M to 2M + R(2k*n/k + (n/k)2)

– Tune k for a trade-off between round and msg

(between alpha and beta), e.g., k = sqrt(n) is typical

21

Outline

• A simple local synchronizer

• Awerbuch’s framework

–An alternative local synchronizer

–A global synchronizer

–Hybrid local/global synchronizer

• Fault tolerance of synchronizers

• Correctness of local synchronizers

22

Fault Tolerance

• None of the synchronizers today

tolerates even a single crash fault

– Fault tolerant synchronizer impossible!

• Clock synchronization using a reference

also does not tolerate a single crash

– Fault tolerant clock synchronization is

possible (in synchrony)
23

Fault Tolerance

• Fault tolerant synchronizer impossible!

• Proof sketch:

– If no one hears from node x, what do we do?

–Must move on eventually (liveness)

•Cannot wait forever, x may have crashed

–But x could be just slow due to asynchrony

•Moving on violates correctness (safety)
24

Safety and Liveness

• Desired property: “good” things happen

• Common and helpful to break it down

• Safety: nothing “bad” happens

• Liveness: something happens

25

Outline

• A simple local synchronizer

• Awerbuch’s framework

–An alternative local synchronizer

–A global synchronizer

–Hybrid local/global synchronizer

• Fault tolerance of synchronizers

• Correctness of local synchronizers

26

Correctness of Synchronizers

• Desired property: equivalence to lockstep

• Straightforward for global synchronizers

•Want to show other synchronizers are

equivalent to global synchronizer

• How do we define equivalence?

– Intuitively today, rigorously next lecture

27

Equivalence of Executions

• We have seen one example

• Again, not equivalent for external observers

• In asynchrony, process cannot rely on time
– Unlike in synchrony

28

Proc 1

Proc 2
……

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4Proc 1’

Proc 2’ 0 1 2 3 4

……

Equivalence of Executions

• We have seen one example

• Again, not equivalent for external observers

• In asynchrony, process cannot rely on time
– Unlike in synchrony

29

Proc 1

Proc 2
……

Proc 1’

Proc 2’
……

Back to Synchronizers

• Recall guarantee: a process sends round-(r+1)

msgs once it receives all round-r msgs

– A process reads round-r msgs (from others) only

after it finishes sending round-r msgs

• So the local view at one process looks like

30

Proc 1 = = + + = =+ ++ + ===+ + ++ =+

Round 1 Round 2 Round 3 Round 4

= send
+ receive

Correctness of Synchronizers

• An execution that results from a local/hybrid

synchronizer may look “unsynchronized”

• But it is equivalent to …

31

Proc 1

Proc 2

= = + + = =+ ++ + ===+ + ++ =+

== ++ = = +++ =+ + == +++ == +

Round 1 Round 2 Round 3 Round 4

= send
+ receive

Correctness of Synchronizers

• A globally synchronized execution

– Events ordered by rounds

– Within a round, send events before receive events

32

Proc 1

Proc 2

== ++== ++++ === ++++= +

== ++== +++= ++==+++

Round 1 Round 2 Round 3 Round 4

= send
+ receive

Correctness of Synchronizers

• Why not the following? Is it also equivalent?

• How do we define equivalence formally?

• Topics for next lecture, exercise for now!

33

Proc 1

Proc 2

= =++==+++ + === ++++= +

==+ += =+++=+ +==+++

Round 1 Round 2 Round 3 Round 4

= send
+ receive

Summary

• Synchronizers: ensure lockstep in async

• Local, global, and hybrid

– Good for rounds, communication, or a trade-off

– Correctness of global synchronizers is clear

– Local/hybrid produce equivalent executions

• Fault tolerant synchronizers impossible

34

