
Lecture 5: Causality and

Logical Clocks

CS 539 / ECE 526

Distributed Algorithms

Announcements

• PS1 due Sunday

– Further clarifications on models: adopt the models

in the lectures by default (no change to problems)

2

3

4

• Widely considered the most important paper
in the history of distributed computing
• “Jim Gray once told me that he had heard two different
opinions of this paper: that it's trivial and that it's
brilliant. I can't argue with the former, and I am
disinclined to argue with the latter.”

5

• In a nutshell, the paper says:
– X happens before Y if, X and Y occur on the same

process and X precedes Y

– A message must be sent before it can be received

• Trivial or brilliant?

Outline

• Equivalent schedules in asynchrony

• Causality: happens-before relation

• Logical clocks

– Lamport clock

–Vector clock

6

Equivalence of Executions
• Are the following executions equivalent?

7

Proc 1

Proc 2

= =++==+++ + === ++++= +

==+ += =+++=+ +==+++

Round 1 Round 2 Round 3 Round 4= send
+ receive

Proc 1

Proc 2

== ++== ++++ === ++++= +

== ++== +++= ++==+++

Equivalence of Executions
• Are the following executions equivalent?

8

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

Equivalence of Executions

• How do we define equivalence formally?

• Two executions are equivalent if every process

finds the two executions indistinguishable

– Again, may not be equivalent for external observers!

• Implies identical actions by each process

• But how do we define indistinguishable?

9

Equivalence of Executions

• In asynchrony, process cannot rely on time

• So indistinguishable to a process if consisting

of the same sequence of events at that proc

– Same set of events in the same order

• Each event can be

– Local compute step

– Sending a message

– Receiving a message
10

Equivalence of Executions
• Are the following executions equivalent?

11

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

(3, F) (1, A) (2, C) (3, G) (1, B) (2, D) (3, H) (2, E)

(1, A) (1, B) (3, F) (2, C) (2, D) (3, G) (2, E) (3, H)

Equivalence of Schedules

• Given a global schedule of events, check each

process’ local schedule

• Anything else to check?

12

Proc 1
Proc 2
Proc 3

(1, B)(1, A)
(2, C)
(3, F)

(2, D) (2, E)
(3, H)(3, G)

(3, F) (1, A) (2, C) (3, G) (1, B) (2, D) (3, H) (2, E)

(1, A) (1, B) (3, F) (2, C) (2, D) (3, G) (2, E) (3, H)

(1, A) (1, B) (2, C) (2, D) (2, E) (3, F) (3, G) (3, H)?

Equivalence of Schedules

• Given a global schedule of events, check each

process’ local schedule

• Anything else to check?

13

(1, A) (1, B) (2, C) (2, D) (2, E) (3, F) (3, G) (3, H)?

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

H
X
G

Equivalence

• Two executions are equivalent if they consist

of the same sequence of events at each proc

– Assuming both are legal executions

• Given a shuffled schedule of events, need to

check if it is a legal / causal execution

– Every msg is sent before received

14

Outline

• Equivalent schedules in asynchrony

• Causality: happens-before relation

• Logical clocks

– Lamport clock

–Vector clock

15

Happens Before

• Event X happens before event Y (X à Y) if

1. X, Y occur at the same process, and X precedes Y;

2. X is the send event of a message and Y is the

receive event of that message; or

3. there exists event Z such that X à Z and Z à Y.

(transitive closure of rules 1 and 2)

16

Happens Before

• What happens-before relations exist below?

– Rule 1: A à B, C à D, D à E, F à G, G à H

– Rule 2: B à E, F à C, D à H

– Rule 3: A à E, F à D, F à E, C à H

17

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

Concurrency

• Event X happens before event Y (X à Y) if

1. X, Y occur at the same process, and X precedes Y;

2. X is the send event of a message and Y is the

receive event of that message; or

3. there exists event Z such that X à Z and Z à Y.

(transitive closure of rules 1 and 2)

• If X ↛ Y and Y ↛ X, then events X and Y are

concurrent (X || Y)
18

Concurrency

• What events are concurrent below?

– A || C, A || D, B || C, B || D

– D || G, E || G

– A || F, B || F, A || G, B || G, A || H, B || H

19

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

Importance of Happens-Before

• Captures causality

– If X à Y, if X has the potential to influence Y

• Y certainly does not influence X

• Concurrent events cannot influence one another

• Fully categorize asynchronous execution

20

Importance of Happens-Before

• Theorem: Let S be a schedule of events in an

execution. Let S’ be a permutation of S. S’ is

an equivalent execution to S, if and only if S’

has identical happens-before relations as S.

21

Importance of Happens-Before

• S ~ S’ iff identical happens-before relations.

• Proof: “If” direction

– Identical happens-before à identical ordering at each

process (Rule 1) à equivalent

– S’ is valid, i.e., send before receive (Rule 2)

“Only if” direction

– Equivalence à same ordering at each proc à Rule 1

– S’ is an execution à Rule 2 preserved
22

(That’s it?)

Outline

• Equivalent schedules in asynchrony

• Causality: happens-before relation

• Logical clocks

– Lamport clock

–Vector clock

23

24

• In a nutshell, the paper says:
– X happens before Y if, X and Y occur on the same

process and X precedes Y

– A message must be sent before it can be received

• Trivial or brilliant?

Logical Clock

• Can we assign labels to events to help keep

track of their happens-before relations?

• These labels are called logical clocks

– Also refer to the algorithms to assign them

• Ideally, X à Y if and only if Label(X) < Label(Y)

25

Lamport Clock

• Each proc keeps a local counter (initially 0)

• Increment upon and assign to each local event

– Sufficient to capture Rule 1 happens-before

• Each msg carries the LC of its send event

• Upon receiving a msg

counter = max(counter, msg.counter) + 1

26

Lamport Clock

• Receive events:

counter = max(counter, msg.counter) + 1

• Other events: counter += 1

27

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

1 2

2 3

1

4

2 4

Lamport Clock Property
• If X à Y, then LC(X) < LC(Y)

• Proof:
– Rule 1: due to counter increment

– Rule 2: due to max

– Rule 3: there exist a chain of Rule 1 and Rule 2

28

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

1 2

2 3

1

4

2 4

Lamport Clock Property
• If LC(X) < LC(Y), then X à Y?

• No!

29

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

1 2

2 3

1

4

2 4

Lamport Clock Property

• If X à Y, then LC(X) < LC(Y). Converse not true.

• Implication?

– Lamport clocks capture all happens-before relations

• Replaying events in the order of Lamport clocks

yield an equivalent execution

– But may have “false positives (causality)”

• May place unnecessary constraints on concurrency

30

Outline

• Equivalent schedules in asynchrony

• Causality: happens-before relation

• Logical clocks

– Lamport clock

–Vector clock

31

Vector Clock

• Want: If X à Y if and only if VC(X) < VC(Y).

• Each clock value is a vector of integers
– Initially, all 0

• When process i executes an event, VC[i] += 1

• Each msg carries VC of send

• When process i receives a msg

VC[j] = max(VC[j], msg.VC[j]) for all j

and then VC[i] += 1
32

Vector Clock
• Receive events:

VC[j] = max(VC[j], msg.VC[j]) for all j

VC[i] += 1

• All events: VC[i] += 1

33

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

(1,0,0) (2,0,0)

(0,1,1) (0,2,1)

(0,0,1)

(2,3,1)

(0,0,2) (0,2,3)

Vector Clock Comparison

• If X à Y if and only if VC(X) < VC(Y).

• Defn: For two vectors V and W of equal length

– V ≤ W if V[j] ≤ W[j] for all j

– V < W if V ≤ W and V ≠ W

34

Vector Clock Property

• If X à Y if and only if VC(X) < VC(Y).

• Proof: left to right direction

– Similar to before

– Rule 1 due to increment

– Rule 2 due to max then increment

– Rule 3 due to transitive closure (chain of 1 and 2)

35

Vector Clock Property

• If X à Y if and only if VC(X) < VC(Y).

• Proof: right to left direction

– First, Y à X impossible

– So just need to rule out Y || X

– If X and Y occur at same process, not Y || X

– Can focus on X at proc i and Y at proc j ≠ i

36

Vector Clock Property

• Lemma: a process knows the latest value of its

own vector component, while others may not

– Proc i is the only one incrementing ith component

37

Proc 1

Proc 2

Proc 3

BA
x

C

F

D E

HG
x

(1,0,0) (2,0,0)

(0,1,1) (0,2,1)

(0,0,1)

(2,3,1)

(0,0,2) (0,2,3)

Vector Clock Property

• If X à Y if and only if VC(X) < VC(Y).

• Proof: right to left direction

– Just need to focus on X at proc i and Y at proc j

– How come VC[X][i] <= VC[Y][i]?

• Proc j learnt the ith component of X when Y occurs

– Must exist a chain of msgs X à … à Y that

propagates ith component of X proc j learn

– X and Y not concurrent, QED
38

Summary

• Happens-before relations

– capture causality

– fully categorize asynchronous executions

• Lamport clocks capture happens-before but

may also impose false causality

• Vector clocks exactly capture happens-before

39

