IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Lecture 5: Causality and

Logical Clocks

CS 539 /ECE 526
Distributed Algorithms

Announcements

* PST1 due Sunday

— Further clarifications on models: adopt the models

in the lectures by default (no change to problems)

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,
computer networks, clock synchronization, multiprocess
systems

CR Categories: 4.32, 5.29

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed

« Widely considered the most important paper
in the history of distributed computing

« “Jim Gray once told me that he had heard two different
opinions of this paper: that it's trivial and that it's
brilliant. I can't argue with the former, and I am
disinclined to argue with the latter.”

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed

» In a nutshell, the paper says:

- X happens before Y if, X and Y occur on the same
process and X precedes Y

- A message must be sent before it can be received

« Trivial or brilliant?

Outline

- Equivalent schedules in asynchrony
- Causality: happens-before relation

- Logical clocks

—Lamport clock

—Vector clock

Equivalence of Executions

- Are the following executions equivalent?

proc 1 == === o S
proc2 =R ++
= send
+ receive ROUNd 1 Round 2 Round 3 Round 4
Proc 1 — ++++-
Proc 2 — 4 +-

Equivalence of Executions

- Are the following executions equivalent?

Proc 1

Proc 2 ¢ NE

H
Proc 3 F/ (A: \

Proc 1 X

Proc 2 k £

Proc 3 F/ Q\‘H

Equivalence of Executions

- How do we define equivalence formally?

- Two executions are equivalent if every process

finds the two executions indistinguishable

- Again, may not be equivalent for external observers!

- Implies identical actions by each process

- But how do we define indistinguishable?

Equivalence of Executions

» In asynchrony, process cannot rely on time

- So indistinguishable to a process if consisting

of the same sequence of events at that proc

— Same set of events in the same order

- Each event can be
— Local compute step
- Sending a message

- Receiving a message

Equivalence of Executions

- Are the following executions equivalent?

Proc 1 ’f B

Proc 2 ///////S: ;;* E
H
Proc 3 " (A: \

(3, F)(] A) 2,0 (3,G)(,B)(2,D)(3,H)2,E)

Proc 1

Proc 2 \
Proc 3 \\\\\\\\\\\\$

(1, A) (1, B)) (2,0 (2,D)(3,0)(2,E)3,H "

Equivalence of Schedules

- Given a global schedule of events, check each

process’ local schedule

- Anything else to check?
(1,A) (1,B)(2,C) (2,D) (2,E) (3, F) (3, G) (3, H)?

3, Q0,A 2,0 G3,G)(1,B)(2,D) (3, H)2,E)

Proc 1 (1,A) (1, B)
Proc 2 2,C) 2,D) (2, E)
Proc 3 3,F) 3,6 @(3,H

(1,A QQ,B)(3,F 2,0 2,D)3,G)(2,E)(3,H) "

Equivalence of Schedules

- Given a global schedule of events, check each

process’ local schedule

- Anything else to check?
(1,A) (1,B)(2,C) (2,D) (2,E) (3, F) (3, G) (3, H)?

Equivalence

- Two executions are equivalent if they consist

of the same sequence of events at each proc

-~ Assuming both are legal executions

- Given a shuffled schedule of events, need to

check if it is a legal / causal execution

- Every msg is sent before received

Outline

- Equivalent schedules in asynchrony
- Causality: happens-before relation

- Logical clocks

—Lamport clock

—Vector clock

Happens Before

- Event X happens before eventY X 2 Y) if

1. X, Y occur at the same process, and X precedes Y;

2. X is the send event of a message and Y is the

receive event of that message; or
3. there exists event Zsuchthat X > Zand Z->Y.

(transitive closure of rules 1 and 2)

Happens Before

- What happens-before relations exist below?
—~Rule1:A>B,C>D,D>E,F>G,G~>H
—~Rule2: B> E,F>C,D>H
~Rule3: A>E,F>D,F2>E C>H

Concurrency

- Event X happens before eventY X 2 Y) if

1. X, Y occur at the same process, and X precedes Y;

2. X is the send event of a message and Y is the

receive event of that message; or
3. there exists event Zsuchthat X > Zand Z->Y.

(transitive closure of rules 1 and 2)

If X»YandyY » X, then events X and Y are

concurrent (X || Y)

Concurrency

« What events are concurrent below?

-A
-D

C, A
G, E

D,BI|IC, BIlD
G

-AllF,BIIF, AllG,BI[G,AllH,BIH

Importance of Happens-Before

- Captures causality

~-If X =2 Y, if X has the potential to influence Y
Y certainly does not influence X

- Concurrent events cannot influence one another

- Fully categorize asynchronous execution

20

Importance of Happens-Before

- Theorem: Let S be a schedule of events in an
execution. Let S’ be a permutation of S. S’ is
an equivalent execution to S, if and only if §’

has identical happens-before relations as S.

21

Importance of Happens-Before

- S ~ S’ iff identical happens-before relations.

« Proof: “If” direction

- Identical happens-before - identical ordering at each

process (Rule 1) =2 equivalent (That’s it?)
- S’ is valid, i.e., send before receive (Rule 2)
“Only if” direction
- Equivalence = same ordering at each proc - Rule 1

- S’ is an execution > Rule 2 preserved

22

Outline

- Equivalent schedules in asynchrony
- Causality: happens-before relation

- Logical clocks

—Lamport clock

—Vector clock

23

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed

» In a nutshell, the paper says:

- X happens before Y if, X and Y occur on the same
process and X precedes Y

- A message must be sent before it can be received

« Trivial or brilliant?

Logical Clock

- Can we assign labels to events to help keep

track of their happens-before relations?

- These labels are called logical clocks

— Also refer to the algorithms to assign them

- ldeally, X =2 Y if and only if Label(X) < Label(Y)

25

Lamport Clock

- Each proc keeps a local counter (initially 0)

- Increment upon and assign to each local event

— Sufficient to capture Rule 1 happens-before
- Each msg carries the LC of its send event
- Upon receiving a msg

counter = max(counter, msg.counter) + 1

26

Lamport Clock

« Recelve events:
counter = max(counter, msg.counter) + 1

« Other events: counter += 1

ON)

Proc 1

2C D E 4

Proc 2
2
Proc 3] F/ Q\‘H 4

ZaN

27

Lamport Clock Property

« If X =Y, then LC(X) < LC(Y)
« Proof:
— Rule 1: due to counter increment
— Rule 2: due to max
— Rule 3: there exist a chain of Rule 1 and Rule 2
1 2
Proc 1 'e‘ B
Proc 2 2C D E4

Proc 3

ZaN

28

Lamport Clock Property

 If LC(X) < LC(Y), then X = Y?
« No!

Proc 1

Proc 2 / \
G2 HA4
Proc 3 IF X

29

Lamport Clock Property

- If X =Y, then LC(X) < LC(Y). Converse not true.

- Implication?
— Lamport clocks capture all happens-before relations

- Replaying events in the order of Lamport clocks

yield an equivalent execution
— But may have “false positives (causality)”

- May place unnecessary constraints on concurrency

30

Outline

- Equivalent schedules in asynchrony
- Causality: happens-before relation

- Logical clocks

—Lamport clock

—Vector clock

31

Vector Clock

- Want: If X 2 Y if and only if VC(X) < VC(Y).

- Each clock value is a vector of integers
— Initially, all O

- When process i executes an event, VC[i] += 1
- Each msg carries VC of send

- When process i receives a msg

VCI[j] = max(VCIj], msg.VC[j]) for all j
and then VCJ[i] +=1

32

Vector Clock

- Receive events:
VCJj] = max(VC[jl, msg.VC]j]) for all]
VCIi] += 1

« All events: VCJ[i] +=1

(1,0,0) (2,0,0)

Proc 1 'e‘ B

(0,1,1) mE (2,3,1)

Proc 2 /
Proc 3 (0,0,1) F (O,O,Z)CXI H (0,2,3)

33

Vector Clock Comparison

- If X 2 Y if and only if VC(X) < VC(Y).

- Defn: For two vectors V and W of equal length
-V LW if V[j] £ W[j] for all j

“V<WifVSWandV = W

34

Vector Clock Property

- If X 2 Y if and only if VC(X) < VC(Y).

. Proof: left to right direction

— Similar to before

— Rule 1 due to increment

— Rule 2 due to max then increment

— Rule 3 due to transitive closure (chain of 1 and 2)

35

Vector Clock Property

- If X 2 Y if and only if VC(X) < VC(Y).

» Proof: right to left direction
— First, Y 2 X impossible
-~ So just need to rule out Y || X

—If X and Y occur at same process, notY || X

- Can focus on X at prociand Y at procj =i

36

Vector Clock Property

- Lemma: a process knows the latest value of its

own vector component, while others may not

— Proc i is the only one incrementing ith component

(1,0,0) (2,0,0)

Proc 1 'e‘ B

Proc 2 0,1,1) mE (2,3,1)
proc 3 (0:0,1) F/IO,O,Z)(X]\‘H 0,2,3)

37

Vector Clock Property

- If X 2 Y if and only if VC(X) < VC(Y).

- Proof: right to left direction

—Just need to focus on X at proc i and Y at proc |
- How come VC[X][i] <= VC[Y][i]?
* Proc j learnt the ith component of X when Y occurs

— Must exist a chain of msgs X = ... 2 Y that

propagates ith component of X proc j learn

—~ X and Y not concurrent, QED

38

Summary

- Happens-before relations

— capture causality

- fully categorize asynchronous executions

- Lamport clocks capture happens-before but

may also impose false causality

 Vector clocks exactly capture happens-before

39

