
Lecture 6: State Machine

Replication and Consensus

CS 539 / ECE 526

Distributed Algorithms

Outline

•Motivation and Model

• Difficulty with Link Failure

• Byzantine agreement and broadcast

2

(State Machine) Replication

• Consider any service

– The server may fail

• Replicate the service

– Need consensus

– Despite some faulty servers

• Goal: provides an illusion of a single non-faulty

server despite that some servers are faulty

3

(State Machine) Replication

• Goal: provides an illusion of a single non-faulty

server despite that some servers are faulty

• More formally: all servers commit the same

sequence of “values”

– Will start with a simpler variant: agree on a single

value

4

Types of Process Faults

• Crash: at some point the process stops

executing

– Msgs need to sent one at a time, so may stop after

sending a subset of msgs in last (lockstep) round

– But need not worry about stopping in the middle of

sending a msg

• Invalid msgs can be detected and discarded

5

Types of Process Faults

• Crash: at some point the process stops

executing

• Byzantine: arbitrary behavior, malicious

– Hardest type of fault to deal with

6

Types of Process Faults

• Crash: at some point the process stops

executing

• Byzantine: arbitrary behavior, malicious

• Other faults (that we will not focus on)

– Fail-stop: notify other processes before crashing

– Crash-recovery

– Omission

7

“Right” Model for Replication?

• Traditionally:

– Message passing

– Asynchrony (or close to it)

– Crash faults

– Generic graph for theoretical interests, complete

graph also reasonable with crash and async

– Known set of participants

– Reliable links

8

Some History
• Consensus problem introduced before 1980

• Lots of interests/progress in 1980s and 1990s

• Reduced interests in 2000s
– Crash fault tolerance replication mostly solved (and

sees wide adoption later)

– Byzantine fault tolerance (BFT) no justification
application

• … Until Nakamoto’s Bitcoin (2009) revived BFT
with new applications: decentralized X/Y/Z …
– Bitcoin assumes some degree of synchrony

– Set of participants unknown or even changing
9

“Right” Model for Replication?

• Traditionally:

– Message passing, asynchrony (or close to it), crash

faults, generic or complete graph, reliable links,

fixed and known participants

• More recently:

– Synchrony, asynchrony, and more

– Crash faults, Byzantine faults, and more

– Unknown and changing participants

10

Timing Model
• Sufficient to focus on communication delay
– Lump computation delay into communication delay

• Synchrony: delay upper bound Δ for every msg
known to all parties
– More ideal model: lockstep rounds

• Asynchrony: no upper bound on delay
– Every message can take arbitrarily long but

eventually arrives (reliable links)

• Partial synchrony: alternating periods of
synchrony and asynchrony

11

Outline

•Motivation and Model

• Difficulty with Link Failure

• Byzantine agreement and broadcast

12

Two General Agreement Problem

13

Attack or
Retreat? Attack or

Retreat?

• Two generals coordinate an attack
– Both generals are honest

– Messenger may be captured

Two General Agreement Problem
• Two honest generals each has an input

• The link between them may lose messages

• Desired outcome: two generals same output

• Safety: the two generals do not output
different values

• Liveness: every general outputs a value

• Validity: If the two generals both input x, then
they both output x
– Needed to avoid trivial solutions

14

Two General Impossibility

15

• Surprisingly, not solvable deterministically

• Theorem: No deterministic algorithm can solve
the two general problem with a lossy link
– Even with lockstep synchrony and one-bit inputs

• In general, making the problem easier makes
an impossibility result stronger

Two General Impossibility Proof

16

• Suppose for contradiction such an algo exists
– WLOG, can assume each general sends a msg every

round (can send NoMsg)

• Consider its execution in which both generals
input 1 and all msgs arrive
– Both generals output 1 due to validity

– Suppose this execution terminates after m rounds,
call it E2m

General 1

General 2
……

1 2 3 …… m-1 m

Two General Impossibility Proof

17

• Suppose for contradiction such an algo exists

• Consider its execution in which both generals
input 1 and all msgs arrive (call it E2m)

• E2m-1: last msg 1à2 lost (lossy link)
– Indistinguishable from E2m to General 1

– General 1 outputs 1 (in round m, and terminates)

– General 2 outputs 1 due to safety

General 1

General 2
……

1 2 3 …… m-1 m

Two General Impossibility Proof

18

• Suppose for contradiction such an algo exists

• Consider its execution in which both generals
input 1 and all msgs arrive (call it E2m)

• E2m-1: last msg 1à2 lost (lossy link)

• E2m-2: last msg 2à1 also lost (lossy link)
– Indistinguishable from E2m-1 to General 2

– General 2 outputs 1

– General 1 outputs 1 due to safety

General 1

General 2
……

1 2 3 …… m-1 m

Two General Impossibility Proof

19

• Suppose for contradiction such an algo exists

• Consider its execution in which both generals
input 1 and all msgs arrive (call it E2m)

• E2m-1: last msg 1à2 lost (lossy link)

• E2m-2: last msg 2à1 also lost (lossy link)

• Remove msg one by one, each time one
general cannot distinguish from previous exec

General 1

General 2
……

1 2 3 …… m-1 m

Two General Impossibility Proof

20

• Suppose for contradiction such an algo exists

• Consider its execution in which both generals
input 1 and all msgs arrive (call it E2m)

• Remove msg one by one, each time one
general cannot distinguish from previous exec

• E0: both input 1, all msgs lost, both output 1

• E’: general 2 inputs 0, all msgs lost

General 1

General 2

1 2 3 …… m-1 m

Two General Impossibility Proof

21

• Suppose for contradiction such an algo exists

• Consider its execution in which both generals
input 1 and all msgs arrive (call it E2m)

• Remove msg one by one, each time one
general cannot distinguish from previous exec

• E0: both input 1, all msgs lost, both output 1

• E’: general 2 inputs 0, all msgs lost
– General 1 cannot distinguish from E0, still outputs 1

– General 2 has to output 1; otherwise safety violated

Two General Impossibility Proof

22

• Suppose for contradiction such an algo exists

• Consider its execution in which both generals
input 1 and all msgs arrive (call it E2m)

• Remove msg one by one, each time one
general cannot distinguish from previous exec

• E0: both input 1, all msgs lost, both output 1

• E’: general 2 inputs 0, all msgs lost, outputs 1

• E’’: general 1 also inputs 0, all msgs lost
– General 2 cannot distinguish from E’, still outputs 1!

– Validity violated! Contradiction. QED

Two General Impossibility

23

• Theorem: No deterministic algorithm can solve
the two general problem with a lossy link
– Even with lockstep synchrony and one-bit inputs

– Where did the proof rely on deterministic?

• Randomization helps a little, not by much
(will not go into this)

• Became a justification for reliable links
– Lossy links too hard to solve?

Justification for Reliable Links

24

• But … this is not sound reasoning

• When generalized to n honest generals,

impossibility holds only if ALL links are lossy

• Fraction of lossy links overlooked, more

research is needed

Justification for Reliable Links

25

• There is, however, a reasonable justification

for assuming reliable links

• A process can keep re-sending until receiving

an ack from recipient

• Turns a lossy link into a reliable async link!

(From a practical perspective)

Outline

•Motivation and Model

• Difficulty with Link Failure

• Byzantine agreement and broadcast

26

Byzantine General’s Problem

27

Attack!
Retreat!

I’ve got
your back! OK, I

am out

• [Lamport, Shostak, and Pease 1982]

Byzantine Agreement Problem
• n generals, each has an input value

• Up to f of them can be traitors

• Desired outcome: every honest general
outputs the same value

28

Byzantine Agreement Problem
• n generals, each has an input value

• Up to f of them can be traitors

• Safety: no two honest generals output
different values

• Liveness: every honest general outputs a value

• Validity: if every honest general inputs x, then
every honest general outputs x
– Needed to avoid trivial solutions

29

Byzantine Agreement Problem
• n parties, each has an input xi , up to f faulty

• Safety: no different outputs

• Liveness: everyone outputs

• Validity: every honest inputs x à everyone
outputs x

30

Byzantine Broadcast Problem
• n generals, including a commander

• Commander has an input value x

• Up to f of them (including the commander)
can be traitors

• Safety: no two honest generals output
different values

• Liveness: every honest general outputs a value

• Validity: if the commander is honest, every
honest general outputs x

31

Byzantine Broadcast Problem
• n parties, including a designated sender with

an input x, up to f faulty

• Safety: no different outputs

• Liveness: everyone outputs

• Validity: sender honest à everyone outputs x

32

Remarks
• Early papers are inconsistent in terminology!

Check their actual definitions!

• Usually assume parties know n and f

• But parties do not know who are faulty
– Otherwise problem is trivial

• Can a Byzantine party behave honestly?
– Yes, by definition

• Is it still considered Byzantine?
– Yes. There is no requirement on what they output.

33

Remarks on Validity
• Broadcast validity seems natural and useful
– Sender honest à output sender’s value

• Agreement validity … much less clear
– Every honest inputs x à every honest outputs x

– Is this useful?

– Let’s look at some examples first. What should the
output be given following honest inputs?
• Binary inputs: 1, 1, 1, 1, 1?

• Binary inputs: 0, 1, 1, 0, 1?

• Multi-value inputs: 3, 3, 5, 2, 3, 3, 3?

34

Remarks on Validity
• Broadcast validity seems natural and useful
– Sender honest à output sender’s value

• Agreement validity … much less clear
– Every honest inputs x à every honest outputs x

– Is this useful?

– Let’s look at some examples first. What should the
output be given following honest inputs?
• Binary inputs: 1, 1, 1, 1, 1? Must be 1

• Binary inputs: 0, 1, 1, 0, 1? Either 0 or 1 is OK

• Multi-value inputs: 3, 3, 5, 2, 3, 3, 3? Anything!

35

Remarks on Validity and Usefulness
• Broadcast validity seems natural and useful

• Agreement validity … not really, only useful
in very limited situations

• Meant to be a clean and easy problem
– Easiest validity to forbid trivial solution

– Value lies in the techniques, usually shed light on
solving replication

– Also valuable in impossibility proofs

36

Tolerating Faults is Hard!
• In general, when there are faults, we almost

always study the consensus problem. Why?

• Partly because it is the easiest problem!

• But still quite hard! (and deceptively simple)

• Let us start from the simplest model
– f crash faults out of n parties in total

– Pair-wise reliable links, lockstep synchrony

– Binary input: x is 0 or 1

• Try to come up with an algorithm!
37

