
Lecture 7: Dolev-Strong

Byzantine Broadcast

CS 539 / ECE 526

Distributed Algorithms

Tolerating Faults is Hard!
• In general, when there are faults, we almost

always study the consensus problem. Why?

• Partly because it is the easiest problem!

• But still quite hard! (and deceptively simple)

• Let us start from the simplest model
– f crash faults out of n parties in total

– Pair-wise reliable links, lockstep synchrony

– Binary input: x is 0 or 1

• Try to come up with an algorithm!
2

First Try

• Output what sender says?

• Lose safety if sender crashes half-way

– Some output sender input; others output Ø / ⊥

3

Sender

Party 2

Party 3

Party 4

Second Try

• Output if anyone echoes sender’s message?

• Lose safety if the “echoer” crashes half-way

4

Sender

Party 2

Party 3

Party 4

Third Try

• Output if majority echoes sender’s message?

• Lose safety if some receive majority echoes but

others do not

5

Sender

Party 2

Party 3

Party 4

Outline

• Flooding broadcast with crash faults

• Dolev-Strong Byzantine broadcast

• Fault tolerant clock synchronization

6

Flooding Broadcast

• Sender sends its input to all

• In each round, echo to all if you receive a value

• After f+1 rounds, output v (if seen v) or Ø / ⊥

7

Sender

Party 2

Party 3

Party 4

Flooding Broadcast

• Liveness and validity obvious

• Safety: if any non-faulty party outputs v ≠ ⊥,

then all non-faulty parties output v

– Proof sketch: When does this non-faulty receive v?

– If not last round, this party echoes v to everyone

– If last round, exists propagation chain of length f+1;

last party is non-faulty and echoes v to everyone

8

Complexity of Flooding Broadcast

• Round complexity: f+1 rounds

• Communication complexity

– O(n2) msgs each of input size

– Not O(n2f)!

9

Challenges for Byzantine

• What goes wrong in flooding broadcast if

there are Byzantine faults?

– Sender sends multiple values

– Byzantine parties “make up” values

– Byzantine parties delay forwarding

10

Outline

• Flooding broadcast with crash faults

• Dolev-Strong Byzantine broadcast

• Fault tolerant clock synchronization

11

Dolev-Strong

• Solves broadcast with f < n Byzantine faults

– Resembles flooding broadcast with a clever twist

• Proposed in 1983, still the best in its setting

• Lock-step synchrony, pairwise reliable links

• Handles multi-value inputs (not just binary)

• Use digital signatures

12

Digital Signatures
• A basic cryptographic primitive

• A signer has a secret key sk

• Everyone has a corresponding public key pk

• Signer: Sign(sk, msg) à σ (signature)

• Anyone else: Verify(pk, msg, σ) à True/False
– Anyone can verify msg came from signer

• Why does it matter for consensus?
– Allows verifying forwarded msgs

13

Dolev-Strong Intuition

• Use flooding, but msgs need to be signed,

first by sender, then by each forwarding party

– Nested signing (((x || σs) σ2) σ3) σ4 …

14

Sender

Party 2

Party 3

Party 4

Dolev-Strong Protocol

• In round r, if a party receives a chain of r

signatures (innermost is the sender’s) on v

– Extract v

– If this is the last round (r=f+1), terminate; Else,

Sign and forward the chain of (now) r+1 signatures

• Signature chain prevents delayed forwarding

– Output v if extracting only v; else, output ⊥

15

Dolev-Strong Safety

• Lemma: If one honest extracts v, then every

honest extracts v

– Proof: when does this honest party extracts v?

– Before last round à this honest party echoes v

– Last round à signature chain of length f+1 à

one of them is honest and echoes v

– An honest party always echoes with valid sig chain,

so every honest party extracts v

16

Dolev-Strong Protocol

• In round r, if a party receives a chain of r

signatures (innermost is the sender’s) on v

– Extract v

– If this is the last round (r=f+1), terminate; Else,

Sign and forward the chain of (now) r+1 signatures

– Each party forwards at most two values

• To avoid excessive communication

– Output v if extracting only v; else, output ⊥
17

Dolev-Strong Correctness

• Liveness obvious

• Validity: if sender is honest, everyone extracts

v and nothing else

– Any value requires innermost sender signature

– Honest sender will not double-sign

18

Dolev-Strong Safety

• If honest party i extracts >= 2 values, everyone

extracts >= 2 values

– Party i or last party in sig chain forwards >= 2 values

• If i extracts v and only v, so does everyone

– If some honest j extracts v’ ≠ v, i extracts v’ too

• If i extracts no value, so does everyone

– If some honest j extracts v, i extracts v too

19

Dolev-Strong Complexity

• f+1 rounds

• 2n2 messages

• Each message up to (f+1)|σ|

• Communication complexity in bits: O(n2f|σ|)

20

Outline

• Flooding broadcast with crash faults

• Dolev-Strong Byzantine broadcast

• Fault tolerant clock synchronization

21

Fault Tolerant Clock Sync

• Previously, we have seen clock sync algorithms

to sync distributed clocks within U = D - d

– Use a reference, everyone syncs within U/2 to ref

– Periodic sync to handle drift

– Not fault tolerant

• Today: clock synchronization tolerating crash

and Byzantine faults
22

Crash Tolerant Clock Sync
• Synchronize every T

Upon AC == K*T

send “sync K” to all

Upon receiving “sync K” for the first time

send “sync K” to all

set adj so that AC = K*T

• Correctness: everyone at most D apart from
the first non-faulty to send “sync K”

• Efficiency: O(n2) msgs

23

Byzantine Tolerant Clock Sync
• Synchronize every T

Upon AC == K*T

sign and send “sync K” to all

Upon receiving f+1 signed “sync K”

send f+1 signed “sync K” to all

set adj so that AC = K*T

• Correctness: everyone at most D apart from
the first non-faulty to send f+1 “sync K”

• Efficiency: O(n2) msgs but O(n2f|σ|) bits

24

Summary
• Dolev-Strong: classic (but still best) sync

Byzantine broadcast using signatures
– f < n Byzantine faults

– f+1 rounds

– 2n2 msgs

– O(n2f|σ|) bits of communication

• Fault tolerant clock sync within D
– Not as good as non-fault-tolerant ones (within U)

– More advanced algorithms exist

25

