Lecture 8: Round and Communication

Complexity of Consensus

CS 539 / ECE 526
Distributed Algorithms

Recall Dolev-Strong

- Lock-step synchronous, authenticated (i.e., use signatures) deterministic broadcast
- Byzantine faults $\mathrm{f}<\mathrm{n}$
-f+1 rounds
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ messages
- O($n^{2 f|\sigma|) ~ b i t s ~}$
- Today: lower bounds on round and communication complexity of deterministic broadcast and agreement protocols

Outline

- Round complexity lower bound
- Communication complexity lower bound

Round Lower Bound

- No deterministic protocol can solve broadcast or agreement with f crash faults in f rounds [Fischer-Lynch,1982] [Dolev-Strong, 1983] [Aguilera-Toueg,1999]
- Easier problem \rightarrow stronger negative result - Binary, lockstep, crash \rightarrow holds for harder models

Configurations

- Union of the states of all parties
- A protocol execution (in lockstep rounds) is an evolution of configurations, one per round
$-\mathrm{C}_{0} \rightarrow \mathrm{C}_{1} \rightarrow \mathrm{C}_{2} \ldots$

Valency

- A config C is 0 -valent, if in all configs reachable from C , honest parties decide 0
- No matter what happens from now on, decide 0
- A config C is $\mathbf{1}$-valent, if, all decide 1
- Univalent $=0$-valent or 1 -valent
- Bivalent = not univalent

Valency Examples

- In broadcast, sender has input 1
- Is this initial configuration univalent or bivalent?
- In agreement, every party has input 1
- Is this initial configuration univalent or bivalent?
- Note that univalent \neq some party decided
- In the deterministic and crash model, after f parties crash, the config becomes univalent

Intuition of the Proof

- Step 1: there exists an initial bivalent config
- Step 2: a new crash can maintain bivalency
- Thus, config can be bivalent after f crashes in frounds (one crash per round)

Lemma 1: Initial Bivalency

- There exists an initial bivalent configuration
- For broadcast: when sender has input $\neq \perp$
- For agreement:
- Suppose every initial config is univalent
- $\mathrm{C}_{0}{ }_{0}$: first i parties have 0 and rest have 1
- (1-val) $\mathrm{C}^{0}{ }_{0}, \mathrm{C}^{1}{ }_{0}, \mathrm{C}^{2}{ }_{0}, \ldots . . ., \mathrm{C}^{\mathrm{i}-1}{ }_{0}, \mathrm{C}^{\mathrm{i}}{ }_{0}, \ldots . . ., \mathrm{C}_{0}(0$-val)
$-\exists \mathrm{i}$ such that 1 -valent $\mathrm{C}^{\mathrm{i}-1}{ }_{0}$ and 0 -valent $\mathrm{C}^{\mathrm{i}}{ }_{0}$
- Only i can tell the difference
- What if i crashes ??? $\mathrm{C}^{\mathrm{i}-1}{ }_{0}$ and $\mathrm{C}_{0}{ }_{0}$ become equivalent

Lemma 2: Maintains Bivalency

- There exists a bivalent $\mathrm{C}_{\mathrm{f}-1}$ (after round $\mathrm{f}-1$)
- Base case: \exists bivalent C_{0}
- Inductive step: \exists bivalent $C_{k-1} \rightarrow \exists$ bivalent C_{k}
- Suppose for contradiction every C_{k} is univalent
- $C_{k}^{*}=$ fail-free evolution of C_{k-1}. WLOG 0-valent.
$-\mathrm{C}_{\mathrm{k}-1}$ is bivalent $\rightarrow \exists 1$-valent $\mathrm{C}^{* *} \mathrm{k}$
- Not fail-free. Suppose party p crashes in round k, without sending msg to $\left\{\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{m}}\right\}(0 \leq \mathrm{m} \leq \mathrm{n})$

Lemma 2 Proof Cont'd

- $\mathrm{C}_{\mathrm{k}}^{*}=$ fail-free evolution of $\mathrm{C}_{\mathrm{k}-1}$. WLOG 0 -valent.
- $\mathrm{C}^{* *}{ }_{k}=\mathrm{p}$ crashes without sending msgs to $\left\{\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{m}}\right\}$
- 1 -valent
- $\mathrm{C}_{\mathrm{k}}^{\mathrm{i}}=\mathrm{p}$ crashes without sending msgs to $\left\{\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{i}}\right\}$
($0 \leq \mathrm{i} \leq \mathrm{m}$)
- (0-val) $\mathrm{C}_{\mathrm{k}}^{0}, \mathrm{C}_{\mathrm{k}}, \mathrm{C}^{2}{ }_{\mathrm{k}}, \ldots \ldots, \mathrm{C}^{\mathrm{i}-1}{ }_{\mathrm{k}}, \mathrm{C}_{\mathrm{k}}^{\mathrm{j}}, \ldots \ldots, \mathrm{Cm}_{\mathrm{k}}(1$-val)
$-\exists \mathrm{i}$ such that 0 -valent $\mathrm{C}^{\mathrm{i}-1}{ }_{\mathrm{k}}$ and 1 -valent $\mathrm{C}_{\mathrm{k}}^{\mathrm{k}}$
- Only j_{i} can tell the difference
- What if j_{i} crashes ???

Lemma 3: Final Disagreement

- Lemma 3: A bivalent configuration $\mathrm{C}_{\mathrm{f}-1}$ leads to safety violation for any f-round protocol - Proof: Same as Lemma 2 except that j_{i} (the only one who can tell the difference) does not have a chance to tell others
- QED. $\mathrm{f}+1$ rounds are needed for deterministic broadcast and agreement protocols.

What Can We Do?

- Optimize good case
- E.g., $\mathrm{t}+2$ rounds where t is actual \# faults
- E.g., constant rounds under a good leader
- Amortization: usually use round robin leaders
- Randomization: usually use random leaders

Outline

- Round complexity lower bound

- Communication complexity lower bound

Communication Complexity

- Different for crash vs. Byzantine
- For crash faults:
- Trivial lower bound: $\Omega(\mathrm{n})$ messages and bits
- Upper bound (best known algorithm): O(n) messages and O(n) bits [Galil-Mayer-Yung, 1995]

Communication Complexity

- Different for crash vs. Byzantine
- For crash faults: $\Theta(n)$ msgs and bits
- For Byzantine faults:
- Will not count msgs sent by Byzantine parties
- Lower bound: $\Omega\left(n+f^{2}\right)$ messages for any
deterministic protocol [Dolev-Resichuk, 1985]
- If $\mathrm{f}=\Theta(\mathrm{n}), \Omega\left(\mathrm{n}^{2}\right) \mathrm{msgs}$, met by Dolev-Strong

Dolev-Reischuk Lower Bound

- No deterministic protocol can solve Byzantine agreement with f faults in $\mathrm{f}^{2} / 4$ messages
- Easier problem \rightarrow stronger negative result - Binary, lockstep \rightarrow holds for harder models

Dolev-Reischuk Proof

- Suppose an algorithm uses < (f/2) ${ }^{2}$ msgs
- Scenario S1:
- Sender is honest and sends $v \neq \perp$
- Let B be an arbitrary set of $f / 2$ Byzantine parties
- Parties in B do not send msgs to each other
- Each party in B ignores the first $\mathrm{f} / 2 \mathrm{msgs}$ to it
- Remaining parties (denoted A) output v (validity)
- $\exists \mathrm{p} \in \mathrm{B}$ that receives $<\mathrm{f} / 2$ msgs (pigeon hole)
- Let $A(p)$ be parties in A who send p msgs
- Most likely, sender $\in A(p)$, but not important
- We have $|A(p)|<f / 2$

Dolev-Reischuk Proof

- Scenario S1:
- Sender is honest and sends $v \neq \perp,|B|=f / 2$ Byzantine
- B do not send msgs to each other \& ignores first f/2 msgs
- Remaining A outputs v
$-\exists p \in B$ such that $|A(p)|<f / 2$
- Scenario S2:
$-A(p)$ and $B \backslash p$ Byzantine (at most $f / 2+f / 2$)
- $B \backslash p$ behave like in $S 1$ and ignore msgs from p
- A(p) does not send msg to p, behave honestly otherwise
- p receives no msg, output $\perp \leftarrow$ Safety violation! \rightarrow
- $A \backslash A(p)$ cannot distinguish $S 1$ and $S 2$, output v
$-B \backslash p, p, A(p)$ all behave the same towards $A \backslash A(p)$

Bit Complexity

- $\Omega\left(n+f^{2}\right)$ msg lower bound implies $\Omega\left(n+f^{2}\right)$ bits
- For $\mathrm{f}<\mathrm{n} / 3, \mathrm{O}\left(\mathrm{n}^{2}\right)$ bits achieved [Berman et al. 1992]
- For $\mathrm{f}<\mathrm{n} / 2, \mathrm{O}\left(\mathrm{n}^{2}|\sigma|\right)$ bits achieved [Momose-Ren, 2020]
- For $\mathrm{f} \geq \mathrm{n} / 2, \mathrm{O}\left(\mathrm{n}^{2}|\sigma|\right)$ bits achieved using heavy and non-standard cryptographic tools
- Some open questions remain, most notably the gap between $\Omega\left(n^{2}\right)$ and $O\left(n^{2}|\sigma|\right)$

What Can We Do?

- Good-case, e.g., O(nt) where t is actual \# fault?
- Very recent direction
- Randomization
- Often sample a committee
- Amortization
- Recent practical replication protocols go this route
- But theoretically sound solutions only very recently

Summary

- Round and communication lower bounds for deterministic broadcast/agreement protocols
- Optimal round complexity: f+1
- Achieved by Dolev-Strong
- Optimal msg complexity for Byzantine: $\Omega\left(\mathrm{n}+\mathrm{f}^{2}\right)$
- Achieved by Dolev-Strong when $\mathrm{f}=\Theta(\mathrm{n})$
- Optimal bit complexity: $\Theta\left(n^{2}\right)$ for $f<n / 3$, gaps remain for other settings

