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Recall Dolev-Strong
• Lock-step synchronous, authenticated (i.e., 

use signatures) deterministic broadcast
– Byzantine faults f < n

– f+1 rounds

– O(n2) messages

– O(n2f|σ|) bits 

• Today: lower bounds on round and 
communication complexity of deterministic 
broadcast and agreement protocols
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Outline

• Round complexity lower bound

• Communication complexity lower bound
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Round Lower Bound
• No deterministic protocol can solve broadcast 

or agreement with f crash faults in f rounds 
[Fischer-Lynch,1982] [Dolev-Strong,1983] [Aguilera-Toueg,1999]

• Easier problem à stronger negative result
– Binary, lockstep, crash à holds for harder models
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Configurations

• Union of the states of all parties

• A protocol execution (in lockstep rounds) is 

an evolution of configurations, one per round

– C0 à C1 à C2 …
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Valency

• A config C is 0–valent, if in all configs 

reachable from C, honest parties decide 0

– No matter what happens from now on, decide 0

• A config C is 1–valent, if ……, all decide 1

• Univalent = 0-valent or 1-valent

• Bivalent = not univalent
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Valency Examples

• In broadcast, sender has input 1

– Is this initial configuration univalent or bivalent?

• In agreement, every party has input 1

– Is this initial configuration univalent or bivalent?

• Note that univalent ≠ some party decided

• In the deterministic and crash model, after f 

parties crash, the config becomes univalent

7



Intuition of the Proof

• Step 1: there exists an initial bivalent config

• Step 2: a new crash can maintain bivalency

• Thus, config can be bivalent after f crashes 

in f rounds (one crash per round)
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Lemma 1: Initial Bivalency

• There exists an initial bivalent configuration

• For broadcast: when sender has input ≠ ⊥

• For agreement: 

– Suppose every initial config is univalent

– Ci
0: first i parties have 0 and rest have 1

– (1-val) C0
0, C1

0, C2
0, ......, Ci-1

0, Ci
0, ......, Cn

0 (0-val)

–∃ i such that 1-valent Ci-1
0 and 0-valent Ci

0

• Only i can tell the difference 

– What if i crashes ??? Ci-1
0 and Ci

0 become equivalent
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Lemma 2: Maintains Bivalency

• There exists a bivalent Cf-1 (after round f-1)

– Base case: ∃ bivalent C0

– Inductive step: ∃ bivalent Ck-1 à ∃ bivalent Ck

– Suppose for contradiction every Ck is univalent

– C*
k = fail-free evolution of Ck-1. WLOG 0-valent.

– Ck-1 is bivalent à ∃ 1-valent C**
k 

• Not fail-free. Suppose party p crashes in round k, 

without sending msg to {j1, j2, …, jm} (0 ≤ m ≤ n)
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Lemma 2 Proof Cont’d

– C*
k = fail-free evolution of Ck-1. WLOG 0-valent.

– C**
k = p crashes without sending msgs to {j1, j2, …, jm} 

• 1-valent

– Ci
k = p crashes without sending msgs to {j1, j2, …, ji} 

(0 ≤ i ≤ m)

– (0-val) C0
k, C1

k, C2
k, ......, Ci-1

k, Ci
k, ......, Cm

k (1-val)

–∃ i such that 0-valent Ci-1
k and 1-valent Ci

k

• Only ji can tell the difference

• What if ji crashes ??? 11



Lemma 3: Final Disagreement

• Lemma 3: A bivalent configuration Cf-1 leads 

to safety violation for any f-round protocol

– Proof: Same as Lemma 2 except that ji (the only 

one who can tell the difference) does not have a 

chance to tell others

• QED. f+1 rounds are needed for deterministic 

broadcast and agreement protocols.
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What Can We Do?
• Optimize good case 
– E.g., t+2 rounds where t is actual # faults

– E.g., constant rounds under a good leader

• Amortization: usually use round robin leaders

• Randomization: usually use random leaders
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Outline

• Round complexity lower bound

• Communication complexity lower bound
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Communication Complexity

• Different for crash vs. Byzantine

• For crash faults:

– Trivial lower bound: Ω(n) messages and bits

– Upper bound (best known algorithm): O(n) 

messages and O(n) bits [Galil-Mayer-Yung, 1995]
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Communication Complexity

• Different for crash vs. Byzantine

• For crash faults: Θ(n) msgs and bits

• For Byzantine faults: 

– Will not count msgs sent by Byzantine parties

– Lower bound: Ω(n+f2) messages for any 

deterministic protocol [Dolev-Resichuk, 1985]

• If f = Θ(n), Ω(n2) msgs, met by Dolev-Strong
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Dolev-Reischuk Lower Bound
• No deterministic protocol can solve Byzantine 

agreement with f faults in f2/4 messages

• Easier problem à stronger negative result
– Binary, lockstep à holds for harder models
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Dolev-Reischuk Proof
• Suppose an algorithm uses < (f/2)2 msgs

• Scenario S1: 
– Sender is honest and sends v ≠ ⊥
– Let B be an arbitrary set of f/2 Byzantine parties

• Parties in B do not send msgs to each other

• Each party in B ignores the first f/2 msgs to it

– Remaining parties (denoted A) output v (validity)

– ∃ p ∈ B that receives < f/2 msgs (pigeon hole)

– Let A(p) be parties in A who send p msgs
• Most likely, sender ∈ A(p), but not important 

– We have |A(p)| < f/2
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Dolev-Reischuk Proof
• Scenario S1: 
– Sender is honest and sends v ≠ ⊥, |B| = f/2 Byzantine

• B do not send msgs to each other & ignores first f/2 msgs

– Remaining A outputs v

– ∃ p ∈ B such that |A(p)| < f/2

• Scenario S2:
– A(p) and B \ p Byzantine (at most f/2+f/2)

– B \ p behave like in S1 and ignore msgs from p

– A(p) does not send msg to p, behave honestly otherwise

– p receives no msg, output ⊥

• A \ A(p) cannot distinguish S1 and S2, output v
– B \ p, p, A(p) all behave the same towards A \ A(p) 
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Bit Complexity

• Ω(n+f2) msg lower bound implies Ω(n+f2) bits

– For f < n/3, O(n2) bits achieved [Berman et al. 1992]

– For f < n/2, O(n2|σ|) bits achieved [Momose-Ren, 2020]

– For f ≥ n/2, O(n2|σ|) bits achieved using heavy and 

non-standard cryptographic tools

• Some open questions remain, most notably 

the gap between Ω(n2) and O(n2|σ|)
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What Can We Do?

• Good-case, e.g., O(nt) where t is actual # fault?

– Very recent direction

• Randomization

– Often sample a committee

• Amortization

– Recent practical replication protocols go this route

– But theoretically sound solutions only very recently
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Summary

• Round and communication lower bounds for 

deterministic broadcast/agreement protocols

• Optimal round complexity: f+1 

– Achieved by Dolev-Strong

• Optimal msg complexity for Byzantine: Ω(n+f2)

– Achieved by Dolev-Strong when f = Θ(n)

• Optimal bit complexity: Θ(n2) for f < n/3,    

gaps remain for other settings 22


