

# Lecture 8: Round and Communication Complexity of Consensus

# CS 539 / ECE 526 Distributed Algorithms

# **Recall Dolev-Strong**

- Lock-step synchronous, authenticated (i.e., use signatures) **deterministic** broadcast
  - Byzantine faults f < n</p>
  - f+1 rounds
  - O(n<sup>2</sup>) messages
  - $O(n^2 f |\sigma|)$  bits
- Today: lower bounds on round and communication complexity of deterministic broadcast and agreement protocols

## Outline

Round complexity lower bound

Communication complexity lower bound

## Round Lower Bound

- No deterministic protocol can solve broadcast or agreement with f crash faults in f rounds [Fischer-Lynch,1982] [Dolev-Strong,1983] [Aguilera-Toueg,1999]
- Easier problem  $\rightarrow$  stronger negative result – Binary, lockstep, crash  $\rightarrow$  holds for harder models

# Configurations

Union of the states of all parties

• A protocol execution (in lockstep rounds) is an evolution of configurations, one per round  $-C_0 \rightarrow C_1 \rightarrow C_2 \dots$ 

# Valency

• A config C is **0-valent**, if in all configs reachable from C, honest parties decide 0

- No matter what happens from now on, decide 0

- A config C is 1-valent, if ....., all decide 1
- Univalent = 0-valent or 1-valent
- **Bivalent** = not univalent

# Valency Examples

- In broadcast, sender has input 1
  - Is this initial configuration univalent or bivalent?
- In agreement, every party has input 1
  - Is this initial configuration univalent or bivalent?
- Note that univalent ≠ some party decided
- In the deterministic and crash model, after f parties crash, the config becomes univalent

## Intuition of the Proof

- Step 1: there exists an initial bivalent config
- Step 2: a new crash can maintain bivalency

• Thus, config can be bivalent after f crashes in f rounds (one crash per round)

## Lemma 1: Initial Bivalency

- There exists an initial bivalent configuration
- For broadcast: when sender has input  $\neq \bot$
- For agreement:
  - Suppose every initial config is univalent
  - $C_0^i$ : first i parties have 0 and rest have 1
  - (1-val)  $C_0^0$ ,  $C_0^1$ ,  $C_0^2$ , ....,  $C_0^{i-1}$ ,  $C_0^i$ , ....,  $C_0^n$  (0-val)
  - $\exists$  i such that 1-valent  $C^{i-1}_0$  and 0-valent  $C^i_0$ 
    - Only i can tell the difference
  - What if i crashes ???  $C^{i-1}_0$  and  $C^i_0$  become equivalent

#### Lemma 2: Maintains Bivalency

- There exists a bivalent C<sub>f-1</sub> (after round f-1)
  - Base case:  $\exists$  bivalent  $C_0$
  - Inductive step:  $\exists$  bivalent  $C_{k-1} \rightarrow \exists$  bivalent  $C_k$
  - Suppose for contradiction every  $C_k$  is univalent
  - $-C_{k}^{*}$  = fail-free evolution of  $C_{k-1}$ . WLOG 0-valent.
  - $C_{k-1}$  is bivalent  $\rightarrow \exists 1$ -valent  $C_{k}^{**}$ 
    - Not fail-free. Suppose party p crashes in round k, without sending msg to  $\{j_1, j_2, ..., j_m\}$  ( $0 \le m \le n$ )

#### Lemma 2 Proof Cont'd

- $-C_{k}^{*}$  = fail-free evolution of  $C_{k-1}$ . WLOG 0-valent.
- $C_{k}^{**}$  = p crashes without sending msgs to {j<sub>1</sub>, j<sub>2</sub>, ..., j<sub>m</sub>}
  - 1-valent
- $C_k^i = p$  crashes without sending msgs to  $\{j_1, j_2, ..., j_i\}$ ( $0 \le i \le m$ )
- (0-val)  $C_k^0$ ,  $C_k^1$ ,  $C_k^2$ , ...,  $C_k^{i-1}$ ,  $C_k^i$ , ...,  $C_k^m$ , (1-val)
- $\exists$  i such that 0-valent  $C^{i-1}_k$  and 1-valent  $C^i_k$ 
  - ${\scriptstyle \bullet}$  Only  $j_i$  can tell the difference
  - What if j<sub>i</sub> crashes ???

## Lemma 3: Final Disagreement

- Lemma 3: A bivalent configuration C<sub>f-1</sub> leads to safety violation for any f-round protocol
  - Proof: Same as Lemma 2 except that  $j_i$  (the only one who can tell the difference) does not have a chance to tell others

• QED. f+1 rounds are needed for deterministic broadcast and agreement protocols.

#### What Can We Do?

- Optimize good case
  - E.g., t+2 rounds where t is actual # faults
  - E.g., constant rounds under a good leader

• Amortization: usually use round robin leaders

• Randomization: usually use random leaders

## Outline

Round complexity lower bound

Communication complexity lower bound

# **Communication Complexity**

- Different for crash vs. Byzantine
- For crash faults:
  - Trivial lower bound:  $\Omega(n)$  messages and bits
  - Upper bound (best known algorithm): O(n)
     messages and O(n) bits [Galil-Mayer-Yung, 1995]

# **Communication Complexity**

- Different for crash vs. Byzantine
- For crash faults:  $\Theta(n)$  msgs and bits
- For Byzantine faults:
  - Will not count msgs sent by Byzantine parties
  - Lower bound: Ω(n+f<sup>2</sup>) messages for any
     deterministic protocol [Dolev-Resichuk, 1985]

• If  $f = \Theta(n)$ ,  $\Omega(n^2)$  msgs, met by Dolev-Strong

## Dolev-Reischuk Lower Bound

- No deterministic protocol can solve Byzantine agreement with f faults in f<sup>2</sup>/4 messages
- Easier problem → stronger negative result
   Binary, lockstep → holds for harder models

## Dolev-Reischuk Proof

- Suppose an algorithm uses  $< (f/2)^2$  msgs
- Scenario S1:
  - Sender is honest and sends v  $\neq \bot$
  - Let B be an arbitrary set of f/2 Byzantine parties
    - Parties in B do not send msgs to each other
    - Each party in B ignores the first f/2 msgs to it
  - Remaining parties (denoted A) output v (validity)
  - $\exists p \in B$  that receives < f/2 msgs (pigeon hole)
  - Let A(p) be parties in A who send p msgs
    - Most likely, sender  $\in A(p)$ , but not important
  - We have |A(p)| < f/2

## Dolev-Reischuk Proof

- Scenario S1:
  - Sender is honest and sends  $v \neq \bot$ , |B| = f/2 Byzantine
    - B do not send msgs to each other & ignores first f/2 msgs
  - Remaining A outputs v
  - ∃ p ∈ B such that |A(p)| < f/2
- Scenario S2:
  - A(p) and B \ p Byzantine (at most f/2+f/2)
  - $B \setminus p$  behave like in S1 and ignore msgs from p
  - A(p) does not send msg to p, behave honestly otherwise
  - p receives no msg, **output**  $\perp \leftarrow$  Safety violation!  $\rightarrow$
- A \ A(p) cannot distinguish S1 and S2, output v
  B \ p, p, A(p) all behave the same towards A \ A(p)

## Bit Complexity

- $\Omega(n+f^2)$  msg lower bound implies  $\Omega(n+f^2)$  bits
  - For f < n/3,  $O(n^2)$  bits achieved [Berman et al. 1992]
  - For f < n/2,  $O(n^2|\sigma|)$  bits achieved [Momose-Ren, 2020]
  - For  $f \ge n/2$ ,  $O(n^2|\sigma|)$  bits achieved using heavy and non-standard cryptographic tools
- Some open questions remain, most notably the gap between  $\Omega(n^2)$  and  $O(n^2|\sigma|)$

## What Can We Do?

- Good-case, e.g., O(nt) where t is actual # fault?
  - Very recent direction
- Randomization
  - Often sample a committee
- Amortization
  - Recent practical replication protocols go this route
  - But theoretically sound solutions only very recently

## Summary

- Round and communication lower bounds for deterministic broadcast/agreement protocols
- Optimal round complexity: f+1
  - Achieved by Dolev-Strong
- Optimal msg complexity for Byzantine:  $\Omega(n+f^2)$ 
  - Achieved by Dolev-Strong when  $f = \Theta(n)$
- Optimal bit complexity:  $\Theta(n^2)$  for f < n/3, gaps remain for other settings