
Lecture 9-10: Fault Bounds of

Consensus

CS 539 / ECE 526

Distributed Algorithms

Today: Fault Bounds

• How many faults can we tolerate?

• Highly sensitive to various conditions

• All the fault bounds in this lecture are tight

2

Outline
• Fault bounds in synchrony

– Byzantine agreement

– Byzantine without signatures

– Total-order broadcast and Replication

• Fault bounds in asynchrony
– Broadcast

– All other problems (FLP impossibility)

• Partial synchrony
– Crash

– Byzantine

3

Fault Bounds So Far

• Synchronous crash broadcast: f < n (flooding)

• Synchronous Byzantine broadcast with

signatures: f < n [Dolev-Strong, 1983]

• How about Agreement?

• How about without signature?

• How about asynchrony?
4

Recall Agreement
• n parties, each has an input xi , up to f faulty

• Safety: no different outputs

• Liveness: everyone outputs

• Validity: every honest inputs x à every honest
outputs x

5

Recall Agreement Validity
• Every honest inputs x à every honest outputs x

• Some examples: what should the output be
given following inputs?
– Binary inputs: 1, 1, 1, 1, 1?

• Must be 1

– Binary inputs: 0, 1, 1, 0, 1?

• Must be 1 if both 0s are Byzantine inputs
• Otherwise, either 0 or 1

– Multi-value inputs: 3, 3, 5, 2, 3, 3, 3?

• Must be 3 if 5 and 2 are Byzantine inputs

• Otherwise, anything is fine

6

Recall Agreement Validity
• Every honest inputs x à every honest outputs x

– Not meant to be useful

– Just an easy condition to rule out trivial solutions

• Why don’t we define a more useful validity?

• Turns out it may make the problem too hard

(problem set 2)

7

Broadcast to Agreement

• Byzantine broadcast (BB) gives BA if f < n/2

– Every party invokes BB on its input

– Every party gets an agreed upon vector

• Byzantine à Any value in that position of vector

– Everyone picks the most frequent value

• f < n/2 needed for validity of Byzantine agreement

8

Broadcast to Agreement

• Safety: same vector, same way to pick

• Liveness: obvious

• Validity: if all honest have same input x, then

x will be the most frequent (since f < n/2)

• Round complexity: same as BB

• Communication complexity: n times BB
9

Byzantine Agreement Fault Bound

• Byzantine agreement is not solvable if f ≥ n/2

– Proof: Divide parties into two groups P and Q such

that |P| ≤ f and |Q| ≤ f

– Scenario I: P are honest and receive input v; Q are

Byzantine and behave as if they receive input v’

• P commits v due to validity

10

Byzantine Agreement Fault Bound

• Byzantine agreement is not solvable if f ≥ n/2

– Proof: Two groups |P| ≤ f and |Q| ≤ f

– Scenario I: P honest & receive v, Q Byzantine &

receive v’ à P commit v due to validity

– Scenario II: Q honest & receive v’, P Byzantine &

receive v à Q commit v’ due to validity

– Scenario III: P receive v, Q receive v’, both honest

• P cannot distinguish III from I & commit v

• Q cannot distinguish III from II & commit v’ 11

Broadcast to Agreement

• Crash tolerant agreement for f < n with a

modification to validity

– Every party invokes broadcast on its input

– Every party gets an agreed upon vector

• Crash à possibly ⊥ in that position of vector

– Everyone picks the most frequent non-⊥ value

12

Broadcast to Agreement

• Problem with standard validity when f ≥ n/2

– Example: inputs 0, 0, 0, 1, 1, 1. How to pick in a tie?

– Pick 0? What if all three parties with input 0 crash

right before they output?

• All three non-faulty have input 1, must output 1

• Symmetric problem for picking 1

• Modified validity: if all n parties input x, all

non-faulty parties output x
13

Broadcast to Agreement

• Safety: same vector, same way to pick

• Liveness: obvious

• Validity: all n parties input x à agreed-upon

vector has only x and ⊥ à all pick x (non-⊥)

• Round complexity: same as broadcast

• Communication complexity: n times broadcast
14

Fault Bound without Signatures

• BA or BB without signatures: f < n/3

[Lamport-Shostak-Pease, 1982]

15

Fault Bound without Signatures

• BA or BB without signatures: f < n/3

• Previous argument was handwavy

– We are trying to prove No algorithm works

– Cannot assume how the protocol works

• Rigorous proof next [Fischer-Lynch-Merritt, 1986]

– Step 1: no BA solution for n = 3, f = 1

– Step 2: generalize to any n ≤ 3f

16

Fischer-Lynch-Merritt Proof

• Suppose for contradiction that there exists

an algorithm that solves BA with n = 3, f = 1

17

B C

A

Fischer-Lynch-Merritt Proof

• Connect six non-faulty processes in a ring,

let them run the algorithm, and feed them

inputs as in the figure

18

A

CB

A

BC

1 1

0

00

1

Fischer-Lynch-Merritt Proof

19

A

CB

A

BC

1 1

0

00

1

B C

A

11

11

Fischer-Lynch-Merritt Proof

20

A

CB

A

BC

1 1

0

00

1

B A

C

0

1

11

1

Fischer-Lynch-Merritt Proof

21

A

CB

A

BC

1 1

0

00

1

B A

C

00

11

1 or 0?

Fischer-Lynch-Merritt Proof

• No algorithm solves BA with n = 3, f = 1

• Now generalize to any n ≤ 3f

• Suppose for contradiction that a magic algo

solves BA for some n and f where n ≤ 3f

• We can use it to solve 1-fault-out-of-3 BA

22

Fischer-Lynch-Merritt Proof

• Use f-out-of-n BA algo to solve 1-out-of-3 BA

– Each of the three parties simulates ≤ f parties so

that the total number of parties is n

• 1 fault out of 3 à ≤ f faults out of n

– Run magic algo, 1-fault-out-of-3 BA solved

– Contradiction, QED

• Where does the proof break down if using

signatures?
23

Fault Bounds So Far

• Crash broadcast and agreement: f < n

• Byzantine broadcast (BB) with signatures: f < n

• Byzantine agreement (BA): f < n/2

• BA or BB without signatures: f < n/3

• Now moving on to more practical problems

24

Broadcast to Replication

• Broadcast gives replication

• Idea: Parties take turns to broadcast values

– Crashed broadcaster à possibly ⊥ in that position

– Byzantine broadcaster à possibly invalid value

– Everyone agrees on those, can simply discard

• This achieves Total-Order Broadcast

25

Total-Order (Atomic) Broadcast

• Parties propose values, and agree on a

sequence of values

• Safety: no different values at every position in

the sequence

• Liveness: every proposed value eventually

added to the sequence

• Validity not needed (no trivial solution)

26

TO Broadcast vs. Replication

• TO broadcast: parties propose values, and

agree on a sequence of values

– Very close to replication, one subtlety remains

• Replication needs to serve external clients,

not just reach consensus among servers

– Clients do not see inner-working of the protocol

27

Replication

• External clients propose values (to servers) and

external clients agree on a sequence of values

28

Replication

• External clients propose values (to servers) and

external clients agree on a sequence of values

• Safety: no different values at every position in

the sequence

• Liveness: every proposed value eventually

added to the sequence

• Validity: external (application level)

29

Replication

• Clients send values to servers; servers run a

total-order broadcast and reply to clients

– Problem solved for crash faults

– Byzantine server can send a fake reply

• Solution: require same reply from f+1 servers

30

Replication Fault Bound

• Byzantine fault tolerant replication requires

same reply from f+1 replicas

• Need n > 2f so that honest > Byzantine

• Byzantine replication impossible if f ≥ n/2

– Two groups |P| ≤ f and |Q| ≤ f present different views

– Client don’t know who to believe

• Cannot distinguish the f Byzantine servers from the

(up to) f honest servers
31

Fault Bounds for Synchrony

• Crash: f < n (ignore agreement)

• Byzantine without signatures: f < n/3

• Byzantine with signatures:

– Broadcast and total-order broadcast: f < n

– Agreement and replication: f < n/2

• Moving on to asynchrony

32

Recall Asynchrony

• Any message can take arbitrarily long

– but will eventually arrive

– (Asynchrony also says any local computation can be

arbitrarily long. But can be lumped into msg delay.)

• Helpful to think of asynchrony as an

adversarial network scheduler

33

Broadcast in Asynchrony

• Cannot tolerate a single crash (broadcaster)

– Same proof as in async impossibility of synchronizer

– No msg from broadcaster, what do we do?

– Wait forever? Violate liveness.

– Move on? Violate validity.

34

FLP Impossibility

• Under asynchrony, no deterministic agreement

protocol can tolerate a single crash fault

[Fischer-Lynch-Patterson, 1985]

• Recall configuration and valency

• Step 1: there exists an initial bivalent config

• Step 2: can always stay bivalent

35

Recall Configurations

• Union of the states of all parties

• A protocol execution is an evolution of

configurations: C0 à C1 à C2 …

• In synchrony, evolve after each round

• In asynchrony, evolve after each msg arrival

– “Msg m arrives at party p” is called an “event”

36

More on Async Configurations

• C0 àe C1 àe’ C2

• Apply events in what order? Does it matter?

• Must apply e before e’ if e happens before e’

– Type 1: two events with the same recipients

– Type 2: one event “triggers” another

• Otherwise, apply in either order, same outcome

– C àe C1 àe’ C2 C àe’ C’1 àe C2

37

Recall Valency

• A config C is 0–valent, if in all configs

reachable from C, honest parties decide 0

– No matter what happens from now on, decide 0

• A config C is 1–valent, if ……, all decide 1

• Univalent = 0-valent or 1-valent

• Bivalent = not univalent

38

FLP Impossibility Proof

• Step 1: there exists an initial bivalent config

– Proved in round lower bound

• Step 2: can always stay bivalent

– What do we have to prove exactly?

– ∀ bivalent C, ∃ bivalent C’ such that C à C’ ?

39

A Warm-Up (Not Actual Proof)

• ∀ bivalent C, ∃ bivalent C’ such that C à C’

– Suppose for contradiction all evolution of C univalent

– ∃ e0, e1 s.t. C àe0 C0 (0-val) and C àe1 C1 (1-val)

– If e0 || e1, then C àe0 C0 àe1 C* == C àe1 C1 àe0 C*

• C* cannot be both 0-val and 1-val, contradiction

– e0 and e1 could not have triggered one another if

they both already exist (applicable to C)

– e0 and e1 must have the same recipient p

40

A Warm-Up (Not Actual Proof)

• ∀ bivalent C, ∃ bivalent C’ such that C à C’

– Suppose for contradiction all evolution of C univalent

– ∃e0, e1 with the same recipient p such that

C àe0 C0 (0-val) and C àe1 C1 (1-val)

– Fate of system depends on which msg reaches p first

• Must wait for p to tell us. What if p does not speak?

• Can’t wait forever; Any decision could be wrong

– Contradiction. C must have a bivalent evolution

41

FLP Impossibility Proof

• Step 1: there exists an initial bivalent config

• Step 2: can always stay bivalent

– What do we have to prove exactly?

– ∀ bivalent C, ∃ bivalent C’ such that C à C’ ?

• Insufficient: may be delaying some events forever

• Actual Step 2: ∀ bivalent C, ∀e applicable to C,

∃ bivalent C’ such that C à …… àe C’ !

– All msgs eventually delivered, still bivalent!
42

FLP Impossibility Proof
• ∀ bivalent C, ∀ e applicable to C, ∃ bivalent C’

such that C à …… àe C’
– S: set of configs reachable from C w/o applying e

– T: set of configs by applying e to S
– Want to prove T contains a bivalent config

• Proof:
– Suppose for contradiction all configs in T univalent

– Can find S0 and S1 ∈ S s.t. Si àe is i-valent

• Find 0-val A0 reachable from C. If A0 ∈ S, done;
Else, trace back to the config before applying e

43

FLP Impossibility Proof
• ∀ bivalent C, ∀ e applicable to C, ∃ bivalent C’

such that C à …… àe C’
– S: set of configs reachable from C w/o applying e

– T: set of configs by applying e to S
– Suppose for contradiction all configs in T univalent

– Can find S0 and S1 ∈ S s.t. Si àe is i-valent

– Can find neighboring S0’ and S1’ ∈ S s.t. S0’ àe’ S1’
and Si’ àe is i-valent
• S is connected, such neighbors must exist

– S0’ àe is 0-valent, S0’ àe’ S1’ àe is 1-valent

– Rest of the proof same as warm-up

44

FLP Impossibility Proof
– S0’ àe is 0-valent, S0’ àe’ S1’ àe S* is 1-valent

Rest same as warm-up:

– e ∦ e’, otherwise S* is both 0–val and 1-val

– So e and e’ have the same recipient p

– Fate depends on which msg arrives at p first

– What if we don’t hear from p?

– Can’t tell if p crashed or is just slow

– Can’t wait forever; Any decision could be wrong

45

FLP Impossibility

• FLP does not say asynchronous consensus is

impossible! Randomized consensus possible.

• Where does the proof rely on “deterministic”?

• Does it mean every deterministic protocol

ALWAYS fails under asynchrony?

– No, just says it can fail, can also get lucky.

46

What can we do given FLP?

• Consider easier problems

• Randomization

– asynchronous agreement, total order broadcast, and

replication possible under randomization

– Single-value broadcast still impossible

• Consider easier models (partial synchrony)

– Single-value broadcast still impossible under psync

47

Partial Synchrony

• (Intuitively) The network is sometimes

asynchronous and sometimes synchronous

– Maintain safety during asynchronous periods

– Achieve liveness during synchronous periods

48

Partial Synchrony

• (Formally) There exists an unknown Global

Standardization Time (GST) after which the

network becomes synchronous

– Forever synchronous after GST???

• Hope to capture “sufficiently long sync periods”

– Unknown to whom?

• Can be viewed as a game between protocol

designer and the adversary

49

Psync Agreement Fault Bound

• Crash: f < n/2

– Proof: Two groups |P| ≤ f and |Q| ≤ f

– Scenario I:

– Scenario II:

– Scenario III:

50

Psync Agreement Fault Bound

• Crash: f < n/2

– Proof: Two groups |P| ≤ f and |Q| ≤ f

– Scenario I: P non-faulty & receive v, Q crash

• P eventually commit v due to validity

– Scenario II: Q non-faulty & receive v’, P crash

• Q eventually commit v’ due to validity

– Scenario III: Both non-faulty, P receive v, Q receive v’

GST sufficiently large à Both think the other crashed

• P commit v, Q commit v’ 51

Psync Agreement Fault Bound

• Byzantine: f < n/3

– Proof: Three groups |P| ≤ f, |Q| ≤ f, |R| ≤ f

– Scenario I:

– Scenario II:

– Scenario III:

52

Psync Agreement Fault Bound

• Byzantine: f < n/3

– Proof: Three groups |P| ≤ f, |Q| ≤ f, |R| ≤ f

– Scenario I: P/R non-faulty & receive v, Q crash
• P eventually commit v due to validity

– Scenario II: Q/R non-faulty & receive v’, P crash

• Q eventually commit v’ due to validity

– Scenario III: P non-faulty & receive v, Q non-faulty &
receive v’, R Byzantine behave towards P like in I and
towards Q like in II. GST sufficiently large.

• P cannot distinguish from I, commit v

• Q cannot distinguish from II, commit v’

53

Async and Psync Fault Bounds

• Agreement under partial synchrony

– Crash: f < n/2

– Byzantine: f < n/3 (nothing to do with signatures)

• Both bounds apply to async or randomized

• Both bounds apply to TO-bcast and replication

– Standard (single-value) broadcast still cannot

tolerant even a single crash!

54

Fault Bounds Summary
• Async deterministic: f = 0

– Broadcast, agreement, total-order bcast, replication

• Psync or randomized async
– Broadcast: f = 0

– Agreement, total-order broadcast, or replication:
crash: f < n/2, Byzantine: f < n/3

• Sync
– Crash: f < n for all four problems

– Byzantine no signature: f < n/3 for all four problems

– Byzantine with signature

• f < n for broadcast and total-order broadcast

• f < n/2 for agreement and replication 55

Fault Bounds Better Summary

• Byzantine agreement: f < n/2

• Byzantine replication: f < n/2

• Byzantine no signature: f < n/3

• Async deterministic: f = 0

• Psync broadcast: f = 0

• Psync crash: f < n/2

• Psync Byzantine: f < n/3
56

