

Lecture 9-10: Fault Bounds of

Consensus

CS 539 / ECE 526 Distributed Algorithms

Today: Fault Bounds

- How many faults can we tolerate?
- Highly sensitive to various conditions
- All the fault bounds in this lecture are **tight**

Outline

- Fault bounds in synchrony
 - Byzantine agreement
 - Byzantine without signatures
 - Total-order broadcast and Replication
- Fault bounds in asynchrony
 - Broadcast
 - All other problems (FLP impossibility)
- Partial synchrony
 - Crash
 - Byzantine

Fault Bounds So Far

- Synchronous crash broadcast: f < n (flooding)
- Synchronous Byzantine broadcast with signatures: f < n [Dolev-Strong, 1983]

- How about Agreement?
- How about without signature?
- How about asynchrony?

Recall Agreement

- n parties, each has an input x_i, up to f faulty
- Safety: no different outputs
- Liveness: everyone outputs
- Validity: every honest inputs $x \rightarrow$ every honest outputs x

Recall Agreement Validity

- Every honest inputs $x \rightarrow$ every honest outputs x
- Some examples: what should the output be given following inputs?
 - Binary inputs: 1, 1, 1, 1, 1?
 - Must be 1
 - Binary inputs: 0, 1, 1, 0, 1?
 - Must be 1 if both 0s are Byzantine inputs
 - Otherwise, either 0 or 1
 - Multi-value inputs: 3, 3, 5, 2, 3, 3, 3?
 - Must be 3 if 5 and 2 are Byzantine inputs
 - Otherwise, anything is fine

Recall Agreement Validity

- Every honest inputs $x \rightarrow$ every honest outputs x
 - Not meant to be useful
 - Just an easy condition to rule out trivial solutions

- Why don't we define a more useful validity?
- Turns out it may make the problem too hard (problem set 2)

- Byzantine broadcast (BB) gives BA if f < n/2
 - Every party invokes BB on its input
 - Every party gets an agreed upon vector
 - Byzantine \rightarrow Any value in that position of vector
 - Everyone picks the most frequent value
 - f < n/2 needed for validity of Byzantine agreement

- Safety: same vector, same way to pick
- Liveness: obvious
- Validity: if all honest have same input x, then
 x will be the most frequent (since f < n/2)

- Round complexity: same as BB
- Communication complexity: *n* times BB

Byzantine Agreement Fault Bound

- Byzantine agreement is not solvable if $f \ge n/2$
 - Proof: Divide parties into two groups P and Q such that $|P| \le f$ and $|Q| \le f$
 - Scenario I: P are honest and receive input v; Q are
 Byzantine and behave as if they receive input v'
 - P commits v due to validity

Byzantine Agreement Fault Bound

- Byzantine agreement is not solvable if $f \ge n/2$
 - Proof: Two groups $|P| \le f$ and $|Q| \le f$
 - Scenario I: P honest & receive v, Q Byzantine &
 receive v' → P commit v due to validity
 - Scenario II: Q honest & receive v', P Byzantine &
 receive v → Q commit v' due to validity
 - Scenario III: P receive v, Q receive v', both honest
 - P cannot distinguish III from I & commit v
 - Q cannot distinguish III from II & commit v'

- Crash tolerant agreement for f < n with a modification to validity
 - Every party invokes broadcast on its input
 - Every party gets an agreed upon vector
 - Crash \rightarrow possibly \perp in that position of vector
 - Everyone picks the most frequent non- \perp value

- Problem with standard validity when $f \ge n/2$
 - Example: inputs 0, 0, 0, 1, 1, 1. How to pick in a tie?
 - Pick 0? What if all three parties with input 0 crash right before they output?
 - All three non-faulty have input 1, must output 1
 - Symmetric problem for picking 1
- Modified validity: if all n parties input x, all non-faulty parties output x

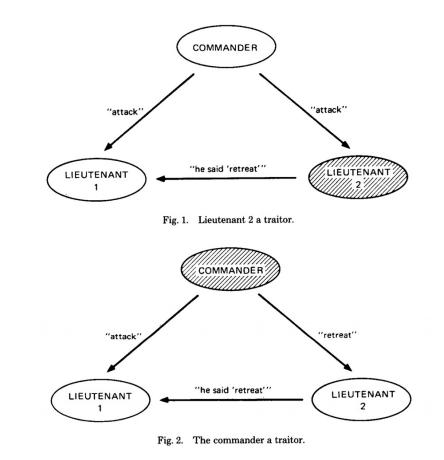
- Safety: same vector, same way to pick
- Liveness: obvious
- Validity: all n parties input $x \rightarrow agreed$ -upon vector has only x and $\perp \rightarrow all$ pick x (non- \perp)

- Round complexity: same as broadcast
- Communication complexity: n times broadcast

Fault Bound without Signatures

• BA or BB without signatures: f < n/3

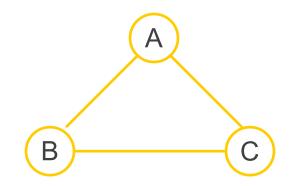
[Lamport-Shostak-Pease, 1982]



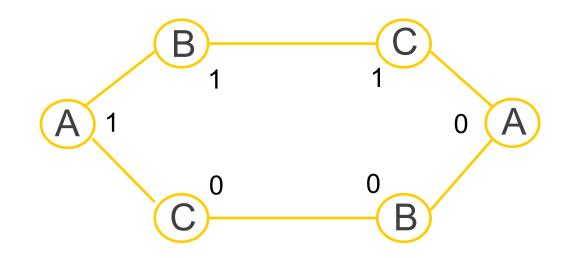
Fault Bound without Signatures

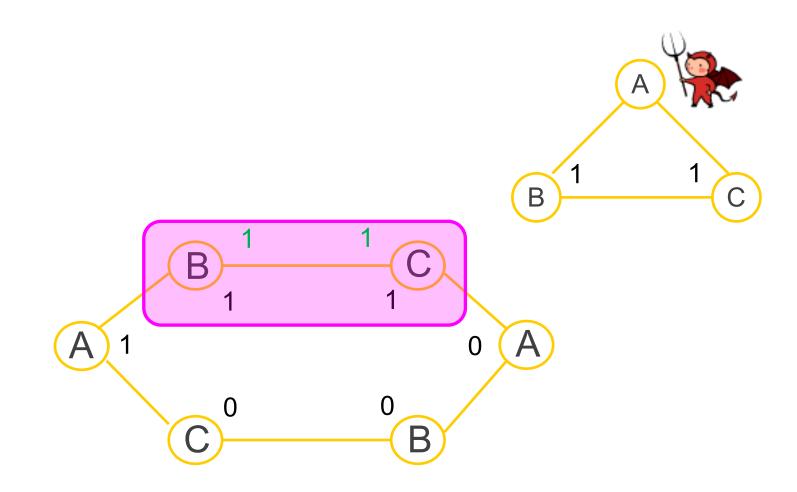
- BA or BB without signatures: f < n/3
- Previous argument was handwavy
 - We are trying to prove *No* algorithm works
 - Cannot assume how the protocol works
- Rigorous proof next [Fischer-Lynch-Merritt, 1986]
 - Step 1: no BA solution for n = 3, f = 1
 - Step 2: generalize to any $n \le 3f$

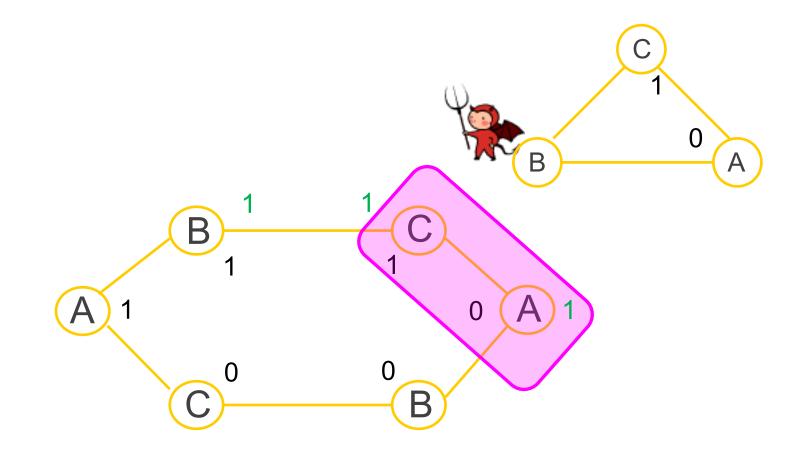
• Suppose for contradiction that there exists an algorithm that solves BA with n = 3, f = 1

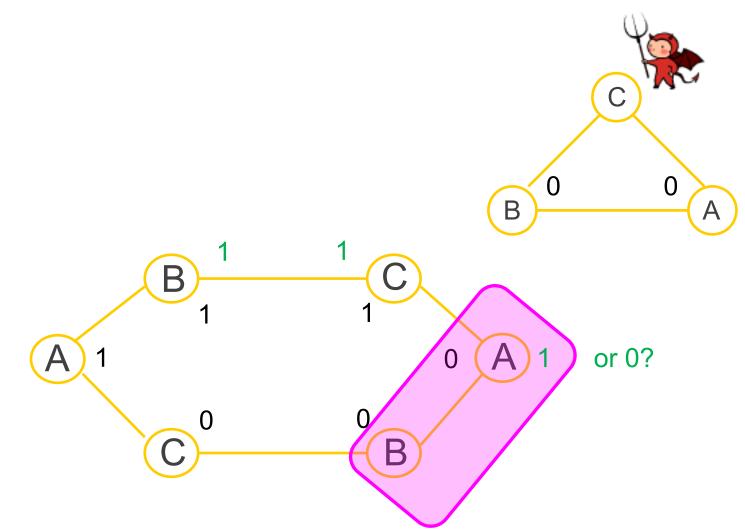


 Connect six non-faulty processes in a ring, let them run the algorithm, and feed them inputs as in the figure









- No algorithm solves BA with n = 3, f = 1
- Now generalize to any $n \leq 3f$
- Suppose for contradiction that a magic algo solves BA for some n and f where $n \le 3f$
- We can use it to solve 1-fault-out-of-3 BA

- Use f-out-of-n BA algo to solve 1-out-of-3 BA
 - Each of the three parties simulates \leq f parties so that the total number of parties is n
 - 1 fault out of 3 $\rightarrow \leq$ f faults out of n
 - Run magic algo, 1-fault-out-of-3 BA solved
 - Contradiction, QED
- Where does the proof break down if using signatures?

Fault Bounds So Far

- Crash broadcast and agreement: f < n
- Byzantine broadcast (BB) with signatures: f < n
- Byzantine agreement (BA): f < n/2
- BA or BB without signatures: f < n/3

Now moving on to more practical problems

Broadcast to Replication

- Broadcast gives replication
- Idea: Parties take turns to broadcast values
 - Crashed broadcaster \rightarrow possibly \perp in that position
 - Byzantine broadcaster \rightarrow possibly invalid value
 - Everyone agrees on those, can simply discard

• This achieves Total-Order Broadcast

Total-Order (Atomic) Broadcast

- Parties propose values, and agree on a sequence of values
- Safety: no different values at every position in the sequence
- Liveness: every proposed value eventually added to the sequence
- Validity not needed (no trivial solution)

TO Broadcast vs. Replication

• TO broadcast: parties propose values, and agree on a sequence of values

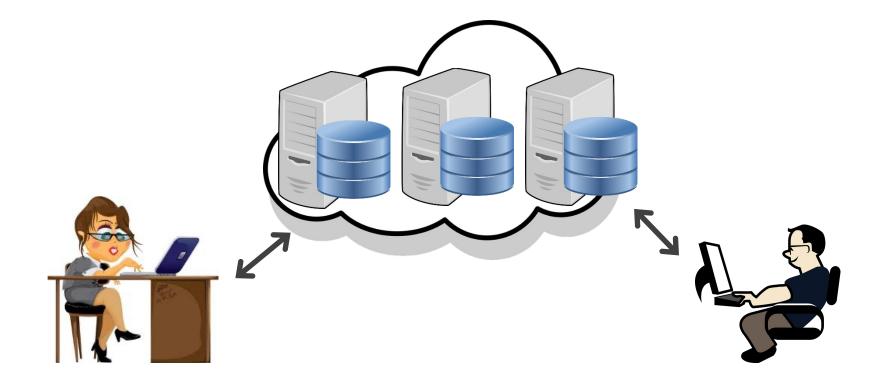
- Very close to replication, one subtlety remains

 Replication needs to serve external clients, not just reach consensus among servers

- Clients do not see inner-working of the protocol

Replication

• External clients propose values (to servers) and external clients agree on a sequence of values

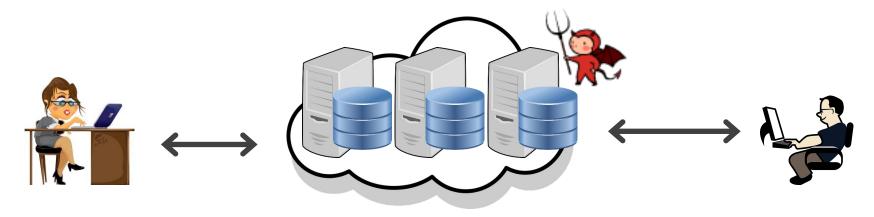


Replication

- External clients propose values (to servers) and external clients agree on a sequence of values
- Safety: no different values at every position in the sequence
- Liveness: every proposed value eventually added to the sequence
- Validity: external (application level)

Replication

- Clients send values to servers; servers run a total-order broadcast and reply to clients
 - Problem solved for crash faults
 - Byzantine server can send a fake reply
 - Solution: require same reply from f+1 servers



Replication Fault Bound

- Byzantine fault tolerant replication requires same reply from f+1 replicas
- Need n > 2f so that honest > Byzantine
- Byzantine replication impossible if $f \ge n/2$
 - Two groups $|P| \le f$ and $|Q| \le f$ present different views
 - Client don't know who to believe
 - Cannot distinguish the f Byzantine servers from the (up to) f honest servers

Fault Bounds for Synchrony

- Crash: f < n (ignore agreement)
- Byzantine without signatures: f < n/3
- Byzantine with signatures:
 - Broadcast and total-order broadcast: f < n</p>
 - Agreement and replication: f < n/2
- Moving on to asynchrony

Recall Asynchrony

- Any message can take arbitrarily long
 - but will eventually arrive
 - (Asynchrony also says any local computation can be arbitrarily long. But can be lumped into msg delay.)

• Helpful to think of asynchrony as an *adversarial network scheduler*

Broadcast in Asynchrony

- Cannot tolerate a single crash (broadcaster)
 - Same proof as in async impossibility of synchronizer
 - No msg from broadcaster, what do we do?
 - Wait forever? Violate liveness.
 - Move on? Violate validity.

FLP Impossibility

 Under asynchrony, no <u>deterministic</u> agreement protocol can tolerate a single crash fault [Fischer-Lynch-Patterson, 1985]

- Recall configuration and valency
- Step 1: there exists an initial bivalent config
- Step 2: can always stay bivalent

Recall Configurations

- Union of the states of all parties
- A protocol execution is an evolution of configurations: $C_0 \rightarrow C_1 \rightarrow C_2 \dots$

- In synchrony, evolve after each round
- In asynchrony, evolve after each msg arrival
 - "Msg m arrives at party p" is called an "event"

More on Async Configurations

• $C_0 \rightarrow_e C_1 \rightarrow_{e'} C_2$

- Apply events in what order? Does it matter?
- Must apply e before e' if e happens before e'
 - Type 1: two events with the same recipients
 - Type 2: one event "triggers" another
- Otherwise, apply in either order, same outcome

 $-C \rightarrow_{e} C_{1} \rightarrow_{e'} C_{2}$ $C \rightarrow_{e'} C'_{1} \rightarrow_{e} C_{2}$

Recall Valency

• A config C is **O-valent**, if in all configs reachable from C, honest parties decide 0

- No matter what happens from now on, decide 0

- A config C is 1-valent, if, all decide 1
- Univalent = 0-valent or 1-valent
- **Bivalent** = not univalent

- Step 1: there exists an initial bivalent config
 - Proved in round lower bound

- Step 2: can always stay bivalent
 - What do we have to prove exactly?
 - \forall bivalent C, \exists bivalent C' such that C \rightarrow C'?

A Warm-Up (Not Actual Proof)

- \forall bivalent C, \exists bivalent C' such that C \rightarrow C'
 - Suppose for contradiction all evolution of C univalent
 - $-\exists e_0, e_1 \text{ s.t. } C \rightarrow_{e_0} C_0 \text{ (0-val) and } C \rightarrow_{e_1} C_1 \text{ (1-val)}$
 - $\text{ If } e_0 \parallel e_1 \text{, then } C \rightarrow_{e_0} C_0 \rightarrow_{e_1} C^* == C \rightarrow_{e_1} C_1 \rightarrow_{e_0} C^*$
 - C* cannot be both 0-val and 1-val, contradiction
 - e_0 and e_1 could not have triggered one another if they both already exist (applicable to C)
 - e_0 and e_1 must have the same recipient p

A Warm-Up (Not Actual Proof)

- \forall bivalent C, \exists bivalent C' such that C \rightarrow C'
 - Suppose for contradiction all evolution of C univalent
 - ∃e₀, e₁ with the same recipient p such that C → e₀ C₀ (0-val) and C → e₁ C₁ (1-val)
 - Fate of system depends on which msg reaches p first
 - Must wait for p to tell us. What if p does not speak?
 - Can't wait forever; Any decision could be wrong
 - Contradiction. C must have a bivalent evolution

- Step 1: there exists an initial bivalent config
- Step 2: can always stay bivalent
 - What do we have to prove exactly?
 - \forall bivalent C, \exists bivalent C' such that C \rightarrow C' ?
 - Insufficient: may be delaying some events forever
- Actual Step 2: ∀ bivalent C, ∀e applicable to C,
 - \exists bivalent C' such that C $\rightarrow \dots \rightarrow_{e}$ C' !
 - All msgs eventually delivered, still bivalent!

- \forall bivalent C, \forall e applicable to C, \exists bivalent C' such that C $\rightarrow \dots \rightarrow_{e}$ C'
 - S: set of configs reachable from C w/o applying e
 - T: set of configs by applying e to S
 - Want to prove **T** contains a bivalent config
- Proof:
 - Suppose for contradiction all configs in $\boldsymbol{\tau}$ univalent
 - Can find S_0 and $S_1 \in S$ s.t. $S_i \rightarrow_e$ is i-valent
 - Find 0-val A_0 reachable from C. If $A_0 \in S$, done; Else, trace back to the config before applying e

- \forall bivalent C, \forall e applicable to C, \exists bivalent C' such that C $\rightarrow \dots \rightarrow_e C'$
 - S: set of configs reachable from C w/o applying e
 - T: set of configs by applying e to S
 - Suppose for contradiction all configs in τ univalent
 - Can find S_0 and $S_1 \in S$ s.t. $S_i \rightarrow_e$ is i-valent
 - Can find *neighboring* S_0 ' and $S_1' \in S$ s.t. $S_0' \rightarrow_{e'} S_1'$ and $S_i' \rightarrow_e$ is i-valent
 - S is connected, such neighbors must exist
 - $-S_0' \rightarrow_e$ is 0-valent, $S_0' \rightarrow_{e'} S_1' \rightarrow_e$ is 1-valent
 - Rest of the proof same as warm-up

- $-S_0$ ' →_e is 0-valent, S_0 ' →_{e'} S_1 ' →_e S* is 1-valent Rest same as warm-up:
- e \parallel e', otherwise S* is both 0-val and 1-val
- So e and e' have the same recipient p
- Fate depends on which msg arrives at p first
- What if we don't hear from p?
- Can't tell if p crashed or is just slow
- Can't wait forever; Any decision could be wrong

FLP Impossibility

- FLP does not say asynchronous consensus is impossible! Randomized consensus possible.
- Where does the proof rely on "deterministic"?

- Does it mean every deterministic protocol ALWAYS fails under asynchrony?
 - No, just says it *can* fail, can also get lucky.

What can we do given FLP?

- Consider easier problems
- Randomization
 - asynchronous agreement, total order broadcast, and replication possible under randomization
 - Single-value broadcast still impossible
- Consider easier models (partial synchrony)

- Single-value broadcast still impossible under psync

Partial Synchrony

- (Intuitively) The network is sometimes asynchronous and sometimes synchronous
 - Maintain safety during asynchronous periods
 - Achieve liveness during synchronous periods

Partial Synchrony

- (Formally) There exists an unknown Global Standardization Time (GST) after which the network becomes synchronous
 - Forever synchronous after GST???
 - Hope to capture "sufficiently long sync periods"
 - Unknown to whom?
 - Can be viewed as a game between protocol designer and the adversary

- Crash: f < n/2
 - Proof: Two groups $|P| \le f$ and $|Q| \le f$
 - Scenario I:

- Scenario II:

- Scenario III:

- Crash: f < n/2
 - Proof: Two groups $|P| \le f$ and $|Q| \le f$
 - Scenario I: P non-faulty & receive v, Q crash
 - P eventually commit v due to validity
 - Scenario II: Q non-faulty & receive v', P crash
 - Q eventually commit v' due to validity
 - Scenario III: Both non-faulty, P receive v, Q receive v' GST sufficiently large \rightarrow Both think the other crashed
 - P commit v, Q commit v'

- Byzantine: f < n/3
 - Proof: Three groups $|P| \le f$, $|Q| \le f$, $|R| \le f$
 - Scenario I:
 - Scenario II:
 - Scenario III:

- Byzantine: f < n/3
 - Proof: Three groups $|P| \le f$, $|Q| \le f$, $|R| \le f$
 - Scenario I: P/R non-faulty & receive v, Q crash
 - P eventually commit v due to validity
 - Scenario II: Q/R non-faulty & receive v', P crash
 - Q eventually commit v' due to validity
 - Scenario III: P non-faulty & receive v, Q non-faulty & receive v', R Byzantine behave towards P like in I and towards Q like in II. GST sufficiently large.
 - P cannot distinguish from I, commit v
 - Q cannot distinguish from II, commit v'

Async and Psync Fault Bounds

- Agreement under partial synchrony
 - Crash: f < n/2
 - Byzantine: f < n/3 (nothing to do with signatures)
- Both bounds apply to async or randomized
- Both bounds apply to TO-bcast and replication
 - Standard (single-value) broadcast still cannot tolerant even a single crash!

Fault Bounds Summary

- Async deterministic: f = 0

 Broadcast, agreement, total-order bcast, replication
- Psync or randomized async
 - Broadcast: f = 0
 - Agreement, total-order broadcast, or replication: crash: f < n/2, Byzantine: f < n/3</p>
- Sync
 - Crash: f < n for all four problems
 - Byzantine no signature: f < n/3 for all four problems
 - Byzantine with signature
 - f < n for broadcast and total-order broadcast
 - f < n/2 for agreement and replication

Fault Bounds Better Summary

- Byzantine agreement: f < n/2
- Byzantine replication: f < n/2
- Byzantine no signature: f < n/3
- Async deterministic: f = 0
- Psync broadcast: f = 0
- Psync crash: f < n/2
- Psync Byzantine: f < n/3