
Lecture 12: Randomized

Asynchronous Agreement

CS 539 / ECE 526

Distributed Algorithms

Announcements

• PS2 graded and solution sketch uploaded.

Regrade requests due tonight.

• P3 due this Friday

• Review lecture next Monday

• Midterm in lecture next Wednesday

– In class, on Canvas, open book

2

What can we do about FLP?

• Consider easier problems

• Randomization

• Consider easier models (partial synchrony)

• Agreement, total order bcast, and replication

possible in psync or async with randomization

– Single-value broadcast still impossible

3

Ben-Or Protocol

• The first randomized async agreement (1983)

– Tolerate f < n/2 crash faults

• Best possible in psync / async

– Binary inputs

• Asynchronous Binary Agreement (ABA)

• Supposed to be simple (still is relatively), but

turns out to be much trickier
4

Ben-Or ABA Protocol
• Party j has input xj. Will keep updating xj

Iteration r:

– Round 1: party j sends (r, vote1, xj) to all

• Wait for n-f such msgs

– Round 2: if all n-f vote1 are for the same x, party j
sends (r, vote2, x); else, sends (r, vote2, ⊥)

• Wait for n-f such msgs

– If all n-f vote2 are for the same x, then decide x;
Else if there is one vote2 for x, then set xj = x;
Else, set xj to 0 or 1 randomly. Go to iteration r+1.

5

Ben-Or ABA Protocol
• Party j has input xj. Will keep updating xj

Iteration r:

– (y, g) ß GAr(xj) // 2-round GA

– If g == 1, then decide y;

Else if y ≠ ⊥, xjß y;

Else, xjß a random bit

– Go to iteration r+1

6

Recall Graded Agreement (GA)
• Party j has input xj:
– Round 1: party j sends (vote1, xj)

• Wait for n-f vote1 msgs

– Round 2: if all n-f vote1 are for the same x, party j
sends (vote2, x); else, sends (vote2, ⊥)

• Wait for n-f vote2 msgs

– If all n-f vote2 are for the same x, then output (x, 1);
Else if there is one vote2 for x, then output (x, 0);
Else, output (⊥, 0).

7

Recall Graded Agreement (GA)
• n parties, each with an input, up to f faulty

• Each party outputs value y and “grade” bit g
– g is roughly “confidence”

• Liveness: everyone outputs

• Validity: same inputs x à all output (x, 1)

• Two safety guarantees:
– S2: One outputs (y, 1), all output (y, *)

– S3: No (y, *) and (y’, *) for y ≠ y’, y ≠ ⊥, y’ ≠ ⊥

8

Termination Gadget

• As written, the protocol does not have a

termination rule

• Termination gadget for crash faults:

– Upon deciding x, send “decide x” to all and terminate

– Upon receiving “decide x”, send “decide x” to all and

terminate

9

Ben-Or ABA Correctness

• Validity: same inputs x à (x, 1) from GA

– In fact, if all parties start iteration r with xj = x,

then all decide x in iteration r

• Safety:

One party decides y (for whom GAr outputs (y, 1))

à GAr outputs (y, *) for all parties (GA S2)

à All set xj to y à All decide y in iteration r+1
10

Ben-Or ABA Correctness

• Liveness:

– GA S3: No (y, *) and (y’, *) for y ≠ y’, y ≠ ⊥, y’ ≠ ⊥

– Possible outcomes: all $ (coin), 0 and $, or 1 and $

– If everyone happens to get the same coin flip AND

it happens to equal those who adopt GA output …

• … this happens with exponentially small prob

– then all parties will start with the same value and

will decide in next iteration
11

Ben-Or ABA Efficiency
• Efficient asynchronous randomized protocols

use a “common coin” subroutine

Iteration r:

– (y, g) ß GAr(xj) // 2-round GA

– If g == 1, then decide y;

Else if y ≠ ⊥, xjß y;

Else, xjß Cr // Cr: r-th common coin

– Go to iteration r+1

12

Ben-Or ABA Efficiency

• With a common coin, want to argue: with

probability ≥ ½, coin = non-⊥ GA output

– At most one non-⊥ GA output

• Hence, decide in expected 2 iterations !?

• Turns out it’s not so simple

13

Ben-Or ABA Liveness
• Let us take a closer look at the protocol

Iteration r:

– (yr, gr) ß GAr(xj) // 2-round GA

– If gr == 1, then decide yr;

Else xjß yr (≠⊥) or Cr // Cr: r-th common coin

– Go to iteration r+1

• Claim: Pr[Cr = yr] = 1/2
– Implicit assumption: yr is independent of Cr
– The adversarial network can manipulate message

delivery order to make sure yr ≠ Cr
14

Ben-Or ABA Protocol (n=3, f=1)
• Party j has input xj. Will keep updating xj

Iteration r:

– Round 1: party j sends (r, vote1, xj)

• Wait for n-f = 2 such msgs

– Round 2: if all n-f=2 vote1 are for the same x, party
j sends (r, vote2, x); else, sends (r, vote2, ?)

• Wait for n-f = 2 such msgs

– If all n-f=2 vote2 are for the same x, then decide x;
Else if there is one vote2 for x, then set xj = x;
Else, set xj to 0 or 1 randomly. Go to iteration r+1.

15

Ben-Or ABA Liveness

• Ben-Or ABA not live if using common coin

– Initially: 0 1 v

– GA1: ⊥

– Adopt: C1

– GA2: ⊥
– Adopt: C2

• With prob ½, an adversarial network can
create an infinite run
– Need 1-C1 = v

16

1-C1

1-C1

1-C2
1-C2

1-C2

1-C1 if C1 = C2
⊥ if C1 ≠ C2

Ben-Or ABA Liveness

• Ben-Or ABA not live if using common coin

• Miraculously, it is live with local coins, but

very inefficient and requires a complex proof

• Can we make Ben-Or work for common coin?

– Yes! [Abraham-BenDavid-Yandamuri, 2022]

– Idea: prevent manipulation of GA outputs after any

party outputs from GA
17

Need Additional Property in GA
• Liveness: everyone outputs

• Validity: same inputs x à all output (x,1)

• Two safety:
– S2: One outputs (y, 1), all output (y, *)

– S3: No (y, *) and (y’, *) for y ≠ y’, y ≠ ⊥, y’ ≠ ⊥

• Binding: once a party outputs, all parties can
only output (⊥, *) or (y, *) (for some y ∈ {0,1})
– “⊥/y-valent” as opposed to “tri-valent”

18

GA with Binding
• Party j has input xj:
– Round 1: party j sends (vote1, xj)

• Wait for n-f vote1 msgs

– Round 2: if all n-f vote1 are for the same x, party j
sends (vote2, x); else, sends (vote2, ⊥)

• Wait for n-f vote2 msgs

– Round 3: if all n-f vote2 are for the same x, party j
sends (vote3, x); else, sends (vote3, ⊥)

• Wait for n-f vote3 msgs

– If all n-f vote3 are for the same x, then output (x, 1);
Else if there is one vote3 for x, then output (x, 0);
Else, output (⊥, 0).

19

GA with Binding
• Liveness, validity proofs similar as before

• Safety: quorum intersection à at most one
non-⊥ vote2 and vote3 à both S2 and S3

• Binding: once a party outputs, all parties can
only output (⊥, *) or (y, *) (for some y ∈ {0,1})
– Consider the first time some party sends vote3

• This is before any party outputs

– Consider the n-f vote2 received by this party

– If one has v ≠ ⊥ à no other non-⊥ vote2 à binding

– If n-f (vote2, ⊥) à everyone receives a (vote2, ⊥) à
everyone sends (vote3, ⊥) à binding (only ⊥)

20

Modern Ben-Or ABA Correctness

• Liveness:

– Possible outcomes: all $ (coin), 0 and $, or 1 and $

• By the time coin is revealed, the outcome for this

iteration is already fixed (GA binding)

– If all coins == adopted value (if any), then all parties

start with same value and decide in next iteration

• 2-n prob with local coin, ½ prob with common coin

21

Modern Ben-Or ABA Efficiency

• In expectation, O(2n) iterations with local coins

and O(1) iterations with common coin

• Rounds: O(1) times expected # of iteration

• Communication complexity: O(n2) times

expected # of iteration

22

Summary

• Ben-Or protocol: randomized asynchronous

binary agreement tolerating f < n/2 crash

• Randomization circumvents FLP

• Also circumvents f+1 round lower bound

23

