
Lecture 13: Partial Synchrony

and Paxos

CS 539 / ECE 526

Distributed Algorithms

What can we do about FLP?

• Consider easier problems

• Randomization

• Consider easier models (partial synchrony)

• Agreement, total order bcast, and replication

possible in psync or async with randomization

– Single-value broadcast still impossible

2

Partial Synchrony

• (Intuitively) The network is sometimes

asynchronous and sometimes synchronous

– Maintain safety during asynchronous periods

– Achieve liveness during synchronous periods

3

Partial Synchrony

• (Formally) There exists an unknown Global

Standardization Time (GST) after which the

network becomes synchronous

– Forever synchronous after GST???

• Hope to capture “sufficiently long sync periods”

– Unknown to whom?

• Can be viewed as a game between protocol

designer and the adversary

4

Psync Agreement Fault Bound

• Crash: f < n/2

– Proof: Two groups |P| ≤ f and |Q| ≤ f

– Scenario I:

– Scenario II:

– Scenario III:

5

Psync Agreement Fault Bound

• Crash: f < n/2

– Proof: Two groups |P| ≤ f and |Q| ≤ f

– Scenario I: P non-faulty & receive v, Q crash

• P eventually commit v due to validity

– Scenario II: Q non-faulty & receive v’, P crash

• Q eventually commit v’ due to validity

– Scenario III: Both non-faulty, P receive v, Q receive v’

GST sufficiently large à Both think the other crashed

• P commit v, Q commit v’ 6

Paxos
• Lamport, submitted 1989, published 1998

• Partial synchronous

• Tolerate f < n/2 crash faults (best possible)

• First practical consensus protocol, likely the
most widely known/used (before Bitcoin)

7

Paxos
• A (state machine) replication protocol
– Agree on a sequence of values

• We will again start with a single value

– Values come from clients, validity is “external”

• Partial synchrony with alternating periods
– Delay bound ∆	holds during synchronous periods

– Maintain safety during async, live during sync
• We will use the unknown GST model

8

Paxos Protocol

• Leader sends (propose, x, k)

– x is the proposed value

– k is a rank/ballot/view/iteration number

9

Replica 1
(Leader)

Replica 2

Replica 3

Paxos Protocol

• Leader sends (propose, x, k)

• Upon receiving the leader’s proposal, others

send (vote, x, k) back to the leader

10

Replica 1
(Leader)

Replica 2

Replica 3

Paxos Protocol

• Leader (propose, x, k); Others (vote, x, k)

• Leader waits for n-f votes, sends (success, x, k)

• Upon receiving (success, x, k), others commit x

11

Replica 1
(Leader)

Replica 2

Replica 3

Paxos Protocol

• Leader (propose, x, k); Others (vote, x, k)

• Leader: (success, x, k); Others: commit x

• After a time-out, repeat under the next leader

with k incremented

12

Replica 1
(Leader)

Replica 2

Replica 3

Paxos Liveness

• Rotating leaders tolerate faulty leaders

• Non-faulty leader after GST gives liveness

13

Replica 1
(Leader)

Replica 2

Replica 3

Paxos Safety

• Safety under one leader is obvious

– Because leader is benign

• Safety across leaders is the challenge

14

Replica 1

Replica 2

Replica 3
(New leader)

x

x’

Safety Across Leaders
• New leader must find out what happened

• If one replica commits x, we want many
replicas to “recommend” x to new leaders
– Naturally, recommend the value one has voted

15

Replica 1

Replica 2

Replica 3
(New leader)

x

x’

Paxos Protocol
• Leader (replica k % n) sends (new-view, k)

• Others reply with (status, k, xlck, klck)

• Leader (propose, x, k)

• Others (vote, x, k) and lock (x, k)

• Leader (success, x, k); Others commit x

16

Replica 1

Replica 2

Replica 3
(New leader) x’

x

Safety Across Views
• One replica commits x

à n-f replicas voted and locked x

à Each future leader collects locks from n-f
replicas, at least one is locked on x
à Due to quorum intersection

à Each future leader re-proposes x

à No other value can ever be proposed, voted
or committed

Any issues in this proof?
17

Safety Across Views
• One replica commits x

à n-f replicas voted and locked x

à Each future leader collects locks from n-f
replicas, at least one is locked on x
à Due to quorum intersection

à Each future leader re-proposes x

What if some other replica reports a
different locked value?

18

Paxos Locks

• Can replicas lock on different values?

– and one of the value is committed?

• Need a tie-breaking mechanism on locks that

favors the committed value (if any)

19

Replica 1
(Last leader)

Replica 2

Replica 3
(New leader)

Paxos Protocol
• Leader (replica k % n) sends (new-view, k)

• Others reply with (status, k, xlck, klck)

• Leader (propose, x, k)

• Others (vote, x, k) and lock (x, k)

• Leader (success, x, k); Others commit x

20

Replica 1
(Last leader)

Replica 2

Replica 3
(New leader)

Paxos Protocol
• Leader (replica k % n) sends (new-view, k)

• Others reply with (status, k, xlck, klck)

• Leader (propose, x, k) where x is the highest
locked value among the f+1 status

• Others (vote, x, k) and lock (x, k)

• Leader (success, x, k); Others commit x

21

Replica 1
(Last leader)

Replica 2

Replica 3
(New leader)

Single-slot Paxos Full Protocol
• Upon detecting a lack of progress, replica (k % n) sends

(new-view, k)

• Upon receiving (new-view, k), a replica enters view k
and replies with (status, k, xlck, klck)

• Upon receiving n-f status, leader sends (propose, x, k)
where x is the highest locked value. If none has
locked, the leader can choose x freely.

• Upon receiving (propose, x, k), a replica sends (vote, k)
and locks (x, k) if it has not entered a higher view

• Upon receiving n-f (vote, k), leader sends (success, x)

• Upon receiving (success, x), a replica commits x

22

Safety Across Views
• One replica commits x in view k

à n-f replicas voted and locked (x, k)

à Leader k+1 collects locks from n-f replicas,
at least one (x, k), which is the highest

à Leader k+1 re-proposes x. No other value
can be voted or locked in view k+1

à Leader k+2 collects locks from n-f replicas,
at least one (x, k), still the highest

à Leader k+2 re-proposes x. No other value
can be voted or locked in view k+2

à …… 23

Paxos Locks
• Tie-breaking favors lock from the latest view

• Why?

• Lock protects a potential commit

• Value x committed à no other higher lock
ever in all subsequent views

• Hence, favoring a higher lock is always safe
– Safe to “unlock” x if there is a higher lock on x’

24

Quiz

• What will go wrong if … ?

– vote for leader k even after quitting view k

– leader waits for only f status

– leader does not repropose highest lock

– the network is async

• When does Paxos become univalent?

• If n > 2f+1, can we wait for less than n-f msgs?

25

Multi-slot Paxos
• All messages are tagged with a slot number s

(position in the ledger)
– (propose/vote/success, s, x, k)

• Steady state vs. view-change
– Repeat propose + vote + success for each slot in

steady state

– Upon lack of progress, do view-change using new-
view + status

26

Multi-slot Paxos
• During view-change, exchange information

on what slots have been committed
– New leader sends (new-view, k, s*) where s* is its

last committed slot (or any format to convey this)

– For slots committed by the follower but not the
leader, send success msg to the leader

– For slots committed by the leader but not the
follower, request success msg from the leader

– For slots committed by neither but locked by the
follower, send (status, k, xlck, klck, s) for all such s

• Leader updates its ledger, send requested
success msgs, re-propose for locked slots,
and propose new values for “fresh” slots 27

Multi-slot Paxos Efficiency

• During steady state (non-faulty leader and

synchrony), 3 rounds and 3n msgs per decision

– Isn’t there a f+1 round lower bound?

• View-change: 2 rounds and possibly many

msgs

28

Paxos Summary
• Most widely known/used and first practical

crash fault tolerant protocol
– Replication, partial synchrony, f < n/2 crash

– Leader-based, quorum intersection, lock ranking

• Original notation FYI:
– new-view = prepare

– status = promise

– propose = accept

– vote = accepted

29

