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Memory

CS 539 / ECE 526

Distributed Algorithms

Some slides are borrowed from Jennifer Welch’s slides of CSCE 668 at Texas A&M



Communication Model

• How do processes communicate?

•Message passing

–More fundamental

• Shared memory

–More convenient

2https://en.wikipedia.org/wiki/Distributed_computing



Shared Memory

• Less fundamental, an abstraction/illusion

–Hard to build a large monolithic memory with 

many read/write ports

–Memory is also a component that receive 

commands and returns responses, via msgs! 

• But considered a more convenient 

(familiar) programming model
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Today

• Distributed Shared Memory (DSM) algo: 

build shared memory from msg passing

–What properties do we want? 

– In what model?

–How?
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Properties of Shared Memory?

• Mimic single-process memory interface

– Readi(X) … Returni(v)

– Writei(X, v) … Acki()

– A read returns the value of the most recent write

• What about overlapping operations?

– Read / write operations are not instantaneous

– [Read1 …   Return1]   [Read3 …   Return3]

– [Write2 …      Ack2]
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Outline

•Memory consistency model: specify 

desired behaviors of shared memory

– Linearizability (atomic consistency)

– Sequential consistency

• Algorithms for DSM

–Total-order broadcast (atomic broadcast)

–ABD (Attiya, Bar-Noy, Dolev)
6



Linearizability (informal)

• Illusion that each op is instantaneous

–Occurs at some point within its start/end

–Also called atomic consistency: ops cannot 

be further divided

• Respect the real-time ordering of       

non-overlapping operations
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Linearizability (formal)

• Let S be a sequence of operation invocations 

and responses. S satisfies linearizability if 

there exists a permutation S’ of S such that 

– Each op is immediately followed by its response

– Each read of X returns the preceding write to X  

– If op1 ends before op2 starts in S, then op1 occurs 

before op2 in S’

8



Linearizability Examples

9

write(X,1) ack(X) read(Y) return(Y,1)

write(Y,1) ack(Y) read(X) return(X,1)

p0

p1

Is this sequence linearizable? Yes - brown triangles.

What if p1's read returns 0?

0

No - see arrow.

1

2

3

4

Suppose there are two shared variables, X and Y, both initially 0



Sequential Consistency (informal)

• As if each op is instantaneous

–Occurs at some point within its start/end

• Respect the real-time ordering of       

non-overlapping ops at the same process
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Sequential Consistency (formal)

• Let S be a sequence of operation invocations 

and responses. S satisfies seq. consistency if 

there exists a permutation S’ of S such that 

– Each op is immediately followed by its response

– Each read of X returns the preceding write to X  

– If op1 ends before op2 starts in S at the same 

process, then op1 occurs before op2 in S’
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write(X,1) ack(X)

Suppose there are two shared variables, X and Y, both initially 0

read(Y) return(Y,1)

write(Y,1) ack(Y) read(X) return(X,0)

p0

p1

Is this sequence sequentially consistent? Yes - brown numbers.

What if p0's read returns 0?

0

No - see arrows.

1 2

3 4

Sequential Consistency Examples
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Outline

•Memory consistency model: specify 

desired behaviors of shared memory

– Linearizability (atomic consistency)

– Sequential consistency

• Algorithms for DSM

–Total-order broadcast (atomic broadcast)

–ABD (Attiya, Bar-Noy, Dolev)
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Algorithm in Shared Memory

•What timing and fault models?

–Asynchrony, because processes may get 

“distracted” for a very long time

• E.g., interrupts

– Fault-free or crash faults

•No need for Byzantine in a multiprocessor
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Algorithm for Linearizable SM

• First idea: use a total-order broadcast!

– Each process replicates the full memory

–Op invoked: send a new request

–Op finishes when request is decided

–All processes see the same sequence of ops 

(consensus), so same correct read responses
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Proof of Linearizability

• First idea: use a total-order broadcast!

– Each process replicates the full memory

– Op invoked: send a new request

– Op finishes when request is decided

• Proof: just need to construct a permutation S’

– Each op is immediately followed by its response

– Each read of X returns the preceding write to X

– Respect real-time order of non-overlapping ops
16



Proof of Linearizability

• Let S’ be the total-order broadcast order

– Each op is immediately followed by its response

• Easily guaranteed by construction

– Each read of X returns the preceding write to X

• Easily guaranteed at each process given consensus

– Respect real-time order of non-overlapping ops

• Op1 ended = decided in TO-bcast

• Op2 starts = appears in TO-bcast only later 
• Op2 is after Op1 in TO-bcast and hence in S’
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Why are Reads Broadcasted?

•Writes need to inform all processes to 

update all their local replicas

• But why do reads also need to be 

broadcasted to all processes?
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Why are Reads Broadcasted?

• If not, scenario below violates linearizability

– Different processes in async TO-bcast may decide 

at (very) different times

19

write(1)

read   return(1)

read   return(0)

to-bc-send

p0

p1

p2



Algo for Seq. Consistency SM

• Sequential consistency is weaker, OK to have               

p2 read(0) — p1 write(1) — p0 read(1)

20

write(1)

read   return(1)

read   return(0)

to-bc-send

p0

p1

p2



Algo for Seq. Consistency SM

• First idea: use a total-order broadcast

• But only on writes!

– Each process replicates the full memory

–Write op invoked: send a new request

–Write op finishes when request is decided

–Read returns local replica right away
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Proof of Seq. Consistency

• Proof: just need to construct a permutation S’

– Each op is immediately followed by its response

– Each read of X returns the preceding write to X

– Respect real-time order of ops at same process
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Proof of Seq. Consistency

• Naturally, put writes in TO-bcast order

• Put each read after latter of: (1) preceding op at that 

process and (2) the write op it reads from

– Each op is immediately followed by its response

• By construction

– Each read of X returns the preceding write to X

• Need to prove this

– Respect real-time order of ops at same process

• By construction of rule (1) 23



Proof of Seq. Consistency

• Put each read after latter of: (1) preceding op at that 

process and (2) the write op it reads from

– Each read of X returns the preceding write to X

• Just need to show another write (W’) to X does not 

fall between this read (R) and preceding write (W)

• W(X, a)        W’(X, b) R(X)=a

• If W’ is by the same process as R, R sees W’
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Proof of Seq. Consistency

• Put each read after latter of: (1) preceding op at that 

process and (2) the write op it reads from

– Each read of X returns the preceding write to X

• W(X, a)        W’(X, b) R(X)=a

• If W’ by another proc, exist O by same proc of R

• If O is a write, W’ before O by TO-bcast, R sees W’

• If O is a read, consider earliest such read 

• Put there because O reads from W’

• O sees W’, so does R 25
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Outline

•Memory consistency model: specify 

desired behaviors of shared memory

– Linearizability (atomic consistency)

– Sequential consistency

• Algorithms for DSM

–Total-order broadcast (atomic broadcast)

–ABD (Attiya, Bar-Noy, Dolev)
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Algorithm for Linearizable SM

• Total-order broadcast: randomization 

needed in async to tolerate crashes

• Deterministic, async, tolerate f < n/2 

crashes [Attiya, Bar-Noy, Dolev, 1995]

–Contradict FLP? 

–No, just means linearizable SM is easier than 
consensus
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Linearizability is Composable

• If each memory cell is linearizable, the 
entire memory is also linearizable
–Rigorous proof omitted, intuition clear: 

merge sub-sequences, all conditions hold 

• In fact, composable for any objects
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write(X,1) ack(X) read(Y) return(Y,1)

write(Y,1) ack(Y) read(X) return(X,1)

p0

p1



Sequential Consistency is 
NOT Composable
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write(X,1) ack(X) read(Y) return(Y,0)

write(Y,1) ack(Y) read(X) return(X,0)

• Subsequences are sequentially consistent
– Need not respect real-time ordering at different procs

• Put together, not sequentially consistent

p0

p1



Back to ABD: Simplifications

• Linearizability is composable

• So we can focus on one memory cell 
(also called a register)

• For now, we assume only a single proc 
can write to the register (single writer)
–Will extend to n writers later
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ABD Algorithm
• Augment with timestamp: reg = (val, ts=0)

• Replicate reg, one per process

• Upon write(v) operation:
t = ts = ts + 1

send “update, v, t” to all

val = v if t > ts

send back “ack, t”

wait until receiving majority acks

return // write completes

31

update(v, t)



ABD Algorithm
• Augment with timestamp: reg = (val, ts=0)

• Replicate reg, one per process

• Upon write(v) operation:
increment ts

update(v, ts)

return // write completes
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ABD Algorithm
• Augment with timestamp: reg = (val, ts=0)

• Replicate reg, one per process

• Upon read() operation:
request local copy from all processes

wait to collect majority copies

(val, ts) = (vj, tj) with largest tj

update(val, ts)

return val to reader 

• Exercise: what goes wrong without update? 33



Proof of Linearizability
• Need to find S’ of all ops and responses s.t.
– Each op immediately followed by its response

– Each read returns preceding write

– Real-time order of non-overlapping ops respected

• Naturally, order all operations by ts
– Each write is associated with unique ts
• Note again we have a single writing proc for now

– Each read return value is associated with a ts

– Ops with same ts: write before reads, earlier read 
before later read, remaining ties broken arbitrarily

34



Proof of Linearizability
• S’: order all ops by ts and attach responses
– Write before reads, earlier read before later read, 

remaining ties broken arbitrarily

• By construction, each op followed by its 
response, and read returns preceding write

• It remains to show S’ respects real-time order 
of non-overlapping ops
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Proof of Linearizability
• S’: order all ops by ts and attach responses
– Write before reads, earlier read before later read, 

remaining ties broken arbitrarily

• Respect real-time order of non-overlapping ops
– R ends before W begins à ts of R < ts of W because 

W increments ts à R occurs before W in S’

– W ends before R begins à ts of W ≤ ts of R because 
one process relays W’s ts to R (quorum intersection) 
à R occurs after W in S’ (S’ puts W before R)

– R1 ends before R2 begins à ts of R1 ≤ ts of R2 for the 
same reason since R1 calls update() just like W à R1

occurs before R2 in S’ (S’ puts earlier reads first)
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Linearizable SM Fault Tolerance

• Can we tolerate f ≥ n/2 crashes? 

• No, standard proof technique for 
disjoint quorums in asynchrony
–Network partitioned

[   Write X   ]

[    Read    ]

–Both ops finish eventually for fault tolerance
but reader is unaware of writer due to async

• The proof/impossibility do not apply to 
sequential consistency 
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Summary

• Atomic and sequential consistency are 
two most basic consistency models for 
shared memory systems
–They are nice to have but expensive to 

achieve (atomic broadcast or ABD)

• Real-world processors opt for much 
weaker consistency models
– Learn more in CS 598 Storage Systems
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