IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Lecture 16: Shared Registers

CS 539 /ECE 526
Distributed Algorithms

Outline

- Types of Shared Registers

- Algorithms
—SRSW Boolean Safe - SRSW Boolean Regular
—SRSW Regular = SRSW Atomic
- SRSW - MRSW
-~ MRSW -> MRMW

Types of Shared Registers

« Boolean vs. multi-value

- Single vs. multiple reader (SR, MR)

- Single vs. multiple writer (SW, MW)

—SRSW: reader is different from writer
(otherwise, not distributed)

- Operations (read/write) can overlap

Shared Registers

- If a read does not overlap with a write,
return the most recent written value

- If a read overlaps with one or more writes
—~“Safe”: can return any value

—Regular: return the initial value or one of the
written values

—Atomic: provides an illusion that each op
happens at some instant [start, end]

- Operations never overlap

Types of Shared Registers

 Discussion: is safe register too weak?
—(Note: a “safe” register is very unsafe)

- Without special treatment, a multi-valued
register is only safe

-0Old value: 011000
—Transient: 001000
—Transient: 001100
—New value: 001110

Types of Shared Registers

 Discussion: is safe register too weak?
—(Note: a “safe” register is very unsafe)

- Without special treatment, a multi-valued
register is only safe

-0Old value: 011000 011000
—Transient: 001000 011010
—Transient: 001100 O11110
—New value: 001110 001110

Space of Shared Registers

MRMW +

MRSW Multi-valued

SRSW Boolean

Safe
Regular
Atomic

Connection to DSM

- Last lecture: distributed algorithms to
build share memory with linearizability
(atomic consistency)

—Total order (atomic) broadcast
—~ABD algorithm

- Another way to view these algorithm:

— Atomic broadcast: MRMW atomic register
—ABD (so far): MRSW atomic register

Outline

- Types of Shared Registers

- Algorithms
—SRSW Boolean Safe - Regular
—SRSW Regular 2> Atomic
- SRSW > MRSW
- MRSW - MRMW

Main Question

- How to implement "stronger” registers
from “weaker” ones?

- Why do we care if we already know how
to achieve atomic (“strongest’) registers?
—Because atomic registers are expensive and

real-world systems may implement weaker
registers and consistency models

Method 1: Mutual Exclusion

- Topic for next lecture

- Achieve atomicity by preventing
overlapping operations altogether

« Downsides:

—May be “blocked” by other processes for a
long time

—Not crash tolerant

Today: Method 2

- Build "stronger” registers from “weaker”
ones tolerating all but one (n-1) crashes

- An algorithm tolerating n-1 crashes is
also said to be wait-free: no process
waits for any other process

—Algorithms today will clearly be wait-free

SRSW Boolean Safe - Reqular

- Use a single Boolean safe register b
- Read(): return b;

« Write(X):
if b!=X //use aread to check

b =X, //perform write only if old != new

SRSW Boolean Safe - Reqular

- Proof of regularity:

-~ Suppose a read overlaps with Tor more writes

— If all those writes == original value, no actual write
occurs - read returns original value

— If one write != original value, OK for a Boolean regular
register to return either O or 1

- Efficiency:
— Memory cost: 1x (none)
— Read cost: 1x (nhone)
— Write cost: one read + one write

Outline

- Types of Shared Registers

- Algorithms
—SRSW Boolean Safe > SRSW Boolean Regular
—SRSW Regular = SRSW Atomic
- SRSW - MRSW
-~ MRSW -> MRMW

SRSW Regular = Atomic

- First, what is a concrete example that a
SRSW regular register fails to be atomic?

—Recall again that writer != reader

| read,] [read,]
| write]

—read, returns new value & read, returns old
allowed by regular, disallowed by atomic

SRSW Regular = Atomic

- Augment the value with a timestamp:
reg = (ts, val)

« Writer maintains a timestamp ts
Write(X):
ts=ts + 1;
reg = (ts, X);

SRSW Regular = Atomic

- Reader (= writer) keeps a local copy
reg_local = (ts, val) in another regular reg

- Read():

if reg.ts > reg_local.ts:
reg_local = req;

return reg_local.val;

To Prove Atomicity/Linearizability

- Find a sequence S’ of operations s.t.

—Each op is immediately followed by its

response
—Each read returns the preceding write value

—If op1 ends before op?2 starts, then opl

occurs before op2 in S’

SRSW Regular = Atomic

- Each write comes with a ts; Reader reads from
local copy, updates local copy upon newer ts.

» Proof: construct S’ by ordering ops by their ts;

W before R, earlier R before later R
— Each op followed by its response - by construction
- Each read returns preceding write - by construction
— Respect real-time order of ops

*[R] or [R] ensured by ts of W

[W] [W]
[Ry][R,]: later read “sees” earlier read’s ts

20

SRSW Regular = Atomic

- Each write comes with a ts; Reader reads from
local copy, updates local copy upon newer ts.

- Efficiency:
— Memory cost: 2X
— Read cost: 2 read + 1 write
— Write cost: 1x
— (Ignoring the use of wider register |ts|+|val| vs |val|)

21

Outline

- Types of Shared Registers

- Algorithms
—SRSW Boolean Safe > SRSW Boolean Regular
—SRSW Regular = SRSW Atomic
- SRSW - MRSW
-~ MRSW -> MRMW

22

SRSW - MRSW

- Allocate one SRSW register per reader

- Read(): // by reader |
return Reglil;

« Write(X):
for each i in [1, n]:
Regli] = x;

SRSW - MRSW

- Allocate one SRSW register per reader
- Reader reads own copy
- Writer updates all copies

- Works for safe and regular registers
- Efficiency:

— Memory cost: n (# of reader)

— Read cost: 1x (none)
— Write cost: n

24

SRSW - MRSW

- Allocate one SRSW register per reader
- Reader reads own copy
- Writer updates all copies

- Does not work for atomic registers

[read by j] [read by k]
[j write k]

25

SRSW Atomic =2 MRSW Atomic

 Lesson: a read needs to ensure later
reads see a value that is no older

—Also the crux in SRSW regular =2 atomic

- In fact, we can prove the theorem below:

 In a wait-free implementation of MRSW
atomic register using SRSW atomic
registers, at least one reader must write

26

SRSW Atomic > MRSW Atomic

« One reader must write. Proof:

—Consider writer p,, and two readers p., py
—Suppose for contradiction no reader writes

— A write by p,, performs many low-level writes
—Each of which visible to either p, or py
- p, and py, read from disjoint SR registers

WRITE
Pw A A A A

write w, write w, ... write w; .- write wy i
7

SRSW Atomic > MRSW Atomic

« One reader must write. Proof:

- Some w, (w,) causes p, (p,) to see new value

—a=b
- Because each write is visible to only 1 reader

Pa READ = hew
Pb
READ = hew
WPRITE
Pw A A A A

write w, write w, ... write w; .- write wy
28

SRSW Atomic =2 MRSW Atomic

« One reader must write. Proof:

- Some w, (w,) causes p, (p,) to see new value
—a=b;WLOGa<b

—New-old inversion after w, 2 not linearizable

Pa READ = new

Ppo _
READ =0ld READ = new

WRITE
Pw A A A A

write w, write w, ... write w; <. write wy .

SRSW Atomic =2 MRSW Atomic

 Lesson: a read needs to ensure later
reads see a value that is no older

- Allocate n*n matrix of SRSW atomic
—(i, j): value reported by reader i to reader |
—The single writer writes to the diagonal

— A reader reads a column and writes a row
(other than diagonal)

30

SRSW Atomic > MRSW Atomic

» Write(y):
ts=ts + 1;

for eachiin [1, n]:
Regli][i] = (y, ts);

(%, t) (%, t) (%, t) (%, t)
(%, t) (%, t) (%, t) (%, t)
(%, t) (%, t) (%, t) (%, t)
(%, t) (%, t) (%, t) (%, t)

perl) | (%) (%, t) (% t)
xt) | (herl) | (x1) (% t)
(%, t) xt) | (herl) | (x1)
(%, t) (%, t) t) | (ne+l)

31

SRSW Atomic > MRSW Atomic

- Read(): // by reader |
read entire column j

(j=2 in example)

write row j with highest ts pair
return the value with highest ts

herl) | (x1) (%, t) (%, t)
) | (nerl) | (%) (%, t)
(%, t) (%, t) (%, t) (%, t)
(%, t) (%, t) (%, t) (%, t)

perl) | k9 | (kO | (x1)

(perl) | (nerl) | (nerl) | (ntt])
xt | k9 | (xt) | (x°)
xt | k9 | (xt) | (xt)

32

SRSW Atomic =2 MRSW Atomic

- Read(): // by reader |
read entire column j

(j=3 in example)

write row j with highest ts pair
return the value with highest ts

perl) | 1) | (kD | (%1

perl) | (petl) | (netl) | (ntt])
1) | xt | k9 [(%1
1) | k1 | k9 | (%1

(perl) | k9 | (kO | (x1)

(perl) | (nerl) | (nerl) | (nttl)

(perl) | (netl) | (o) | (nttl)
) | k9 | (xt) | (xt)

33

SRSW Atomic > MRSW Atomic

- Proof of atomicity similar:

—Construct S’ by ordering ops by ts, put W
before R, earlier R before later R

—Argue the three conditions for atomicity hold
- Key step: a read ensures later reads see a
value that is no older
- Efficiency:
—~Memory cost: n?
—Read cost: n reads + n writes
—~Write cost: n writes

34

Outline

- Types of Shared Registers

- Algorithms
—SRSW Boolean Safe > SRSW Boolean Regular
—SRSW Regular = SRSW Atomic
- SRSW - MRSW
-~ MRSW -> MRMW

35

MRSW Atomic 2> MRMW Atomic

- Allocate one MRSW atomic register per writer
- Augment with ts

Write(x): // by writer |
Read all registers to find max_ts
regli] = (max_ts+1, X);
Read():
Read all registers
Return value with max ts

36

MRSW Atomic 2> MRMW Atomic

« Can two writes have the same ts?
» Yes! Break ties deterministically using proc ID

Write(x): // by writer |
Read all registers to find max_ts
regli] = (max_ts+1, X);
Read():
Read all registers
Return value with max (ts, writer proc ID)

37

MRSW Atomic 2> MRMW Atomic

» Proof: construct S’ by ordering all writes by
(ts, writer proc ID)

- Put each read after the write it reads from,
earlier read before later read

- By construction, every op followed by
response, and read returns preceding write

- Remains to prove real-time order respected

38

MRSW Atomic > MRMW Atomic

- Remains to prove real-time order respected
— Case 1: W, ends before W, begins
> W, reads local copy updated by W, & increments ts
> ts of W, < ts of W, > W, before W, in §’

-~ Case 2: W ends before R begins > R sees (ts, WID)
of W or higher > R after Win S’

-~ Case 3: R ends before W begins > W sees (ts, WID)
that R reads from or higher, and then increments ts
> tsof R<ts of W > R before Win §’

- Case 4: R, ends before R, begins 2 R, sees (ts, WID)
that R, reads from or higher > R, after R, in §’

39

Summary

- The strongest register can be built from
the weakest with wait-freedom

—SRSW safe =>* regular 2 atomic
*only showed binary

-SRSW - MRSW - MRMW

MRMW —+

A

MRSW T Multi-valued

—... also with high costs

SRSW T Boolean

Safe
Regular

Atomic

40

