
Lecture 16: Shared Registers

CS 539 / ECE 526

Distributed Algorithms

Outline

• Types of Shared Registers

• Algorithms

– SRSW Boolean Safe à SRSW Boolean Regular

– SRSW Regular à SRSW Atomic

– SRSW à MRSW

–MRSW à MRMW

2

Types of Shared Registers

• Boolean vs. multi-value

• Single vs. multiple reader (SR, MR)

• Single vs. multiple writer (SW, MW)
– SRSW: reader is different from writer

(otherwise, not distributed)

• Operations (read/write) can overlap

3

Shared Registers

• If a read does not overlap with a write,
return the most recent written value

• If a read overlaps with one or more writes
– “Safe”: can return any value

–Regular: return the initial value or one of the
written values

–Atomic: provides an illusion that each op
happens at some instant [start, end]

•Operations never overlap
4

Types of Shared Registers

• Discussion: is safe register too weak?
– (Note: a “safe” register is very unsafe)

•Without special treatment, a multi-valued
register is only safe
–Old value: 011000

–Transient: 001000

–Transient: 001100

–New value: 001110

5

Types of Shared Registers

• Discussion: is safe register too weak?
– (Note: a “safe” register is very unsafe)

•Without special treatment, a multi-valued
register is only safe
–Old value: 011000 011000

–Transient: 001000 011010

–Transient: 001100 011110

–New value: 001110 001110

6

Space of Shared Registers

7

Connection to DSM

• Last lecture: distributed algorithms to
build share memory with linearizability
(atomic consistency)
–Total order (atomic) broadcast

–ABD algorithm

• Another way to view these algorithm:
–Atomic broadcast: MRMW atomic register

–ABD (so far): MRSW atomic register

8

Outline

• Types of Shared Registers

• Algorithms

– SRSW Boolean Safe à Regular

– SRSW Regular à Atomic

– SRSW à MRSW

–MRSW à MRMW

9

Main Question

• How to implement ”stronger” registers
from “weaker” ones?

•Why do we care if we already know how
to achieve atomic (“strongest”) registers?
–Because atomic registers are expensive and

real-world systems may implement weaker
registers and consistency models

10

Method 1: Mutual Exclusion

• Topic for next lecture

• Achieve atomicity by preventing
overlapping operations altogether

• Downsides:
–May be “blocked” by other processes for a

long time

–Not crash tolerant

11

Today: Method 2

• Build ”stronger” registers from “weaker”
ones tolerating all but one (n-1) crashes

• An algorithm tolerating n-1 crashes is
also said to be wait-free: no process
waits for any other process
–Algorithms today will clearly be wait-free

12

SRSW Boolean Safe à Regular

• Use a single Boolean safe register b

• Read(): return b;

•Write(x):

if b != x // use a read to check

b = x; // perform write only if old != new

13

SRSW Boolean Safe à Regular
• Proof of regularity:
– Suppose a read overlaps with 1or more writes

– If all those writes == original value, no actual write
occurs à read returns original value

– If one write != original value, OK for a Boolean regular
register to return either 0 or 1

• Efficiency:
– Memory cost: 1x (none)

– Read cost: 1x (none)

– Write cost: one read + one write

14

Outline

• Types of Shared Registers

• Algorithms

– SRSW Boolean Safe à SRSW Boolean Regular

– SRSW Regular à SRSW Atomic

– SRSW à MRSW

–MRSW à MRMW

15

SRSW Regular à Atomic

• First, what is a concrete example that a
SRSW regular register fails to be atomic?
–Recall again that writer != reader

[read1] [read2]

[write]

– read1 returns new value & read2 returns old
allowed by regular, disallowed by atomic

16

SRSW Regular à Atomic

• Augment the value with a timestamp:
reg = (ts, val)

•Writer maintains a timestamp ts

Write(x):

ts = ts + 1;

reg = (ts, x);

17

SRSW Regular à Atomic

• Reader (!= writer) keeps a local copy
reg_local = (ts, val) in another regular reg

• Read():

if reg.ts > reg_local.ts:

reg_local = reg;

return reg_local.val;

18

To Prove Atomicity/Linearizability

• Find a sequence S’ of operations s.t.

– Each op is immediately followed by its

response

– Each read returns the preceding write value

– If op1 ends before op2 starts, then op1

occurs before op2 in S’

19

SRSW Regular à Atomic
• Each write comes with a ts; Reader reads from

local copy, updates local copy upon newer ts.

• Proof: construct S’ by ordering ops by their ts;
W before R, earlier R before later R
– Each op followed by its response – by construction

– Each read returns preceding write – by construction

– Respect real-time order of ops

• [R] or [R] ensured by ts of W

[W] [W]

• [R1] [R2]: later read “sees” earlier read’s ts

20

SRSW Regular à Atomic
• Each write comes with a ts; Reader reads from

local copy, updates local copy upon newer ts.

• Efficiency:
– Memory cost: 2x

– Read cost: 2 read + 1 write

– Write cost: 1x

– (Ignoring the use of wider register |ts|+|val| vs |val|)

21

Outline

• Types of Shared Registers

• Algorithms

– SRSW Boolean Safe à SRSW Boolean Regular

– SRSW Regular à SRSW Atomic

– SRSW à MRSW

–MRSW à MRMW

22

SRSW à MRSW

• Allocate one SRSW register per reader

• Read(): // by reader i

return Reg[i];

•Write(x):

for each i in [1, n]:

Reg[i] = x;
23

SRSW à MRSW

• Allocate one SRSW register per reader

• Reader reads own copy

•Writer updates all copies

•Works for safe and regular registers

• Efficiency:
– Memory cost: n (# of reader)

– Read cost: 1x (none)

– Write cost: n
24

SRSW à MRSW

• Allocate one SRSW register per reader

• Reader reads own copy

•Writer updates all copies

• Does not work for atomic registers
[read by j] [read by k]

[j write k]

25

SRSW Atomic à MRSW Atomic

• Lesson: a read needs to ensure later
reads see a value that is no older
–Also the crux in SRSW regular à atomic

• In fact, we can prove the theorem below:

• In a wait-free implementation of MRSW
atomic register using SRSW atomic
registers, at least one reader must write

26

SRSW Atomic à MRSW Atomic

• One reader must write. Proof:
–Consider writer pw and two readers pa, pb
– Suppose for contradiction no reader writes

–A write by pw performs many low-level writes

– Each of which visible to either pa or pb
• pa and pb read from disjoint SR registers

27

pw
write w1 write w2 write wj write wk… …

write

SRSW Atomic à MRSW Atomic

• One reader must write. Proof:
– Some wa (wb) causes pa (pb) to see new value

– a ≠ b
• Because each write is visible to only 1 reader

28

pw
write w1 write w2 write wj write wk… …

write

pa read = new

pb
read = new

SRSW Atomic à MRSW Atomic

• One reader must write. Proof:
– Some wa (wb) causes pa (pb) to see new value

– a ≠ b; WLOG a < b

–New-old inversion after wa à not linearizable

29

pw
write w1 write w2 write wj write wk… …

write
read = old

pa read = new

pb
read = new

SRSW Atomic à MRSW Atomic

• Lesson: a read needs to ensure later
reads see a value that is no older

• Allocate n*n matrix of SRSW atomic
– (i, j): value reported by reader i to reader j

–The single writer writes to the diagonal

–A reader reads a column and writes a row
(other than diagonal)

30

SRSW Atomic à MRSW Atomic
• Write(y):

ts = ts + 1;

for each i in [1, n]:

Reg[i][i] = (y, ts);

31

(y, t+1) (x, t) (x, t) (x, t)

(x, t) (y, t+1) (x, t) (x, t)

(x, t) (x, t) (y, t+1) (x, t)

(x, t) (x, t) (x, t) (y, t+1)

(x, t) (x, t) (x, t) (x, t)

(x, t) (x, t) (x, t) (x, t)

(x, t) (x, t) (x, t) (x, t)

(x, t) (x, t) (x, t) (x, t)

SRSW Atomic à MRSW Atomic
• Read(): // by reader j (j=2 in example)

read entire column j

write row j with highest ts pair

return the value with highest ts

32

(y, t+1) (x, t) (x, t) (x, t)

(x, t) (y, t+1) (x, t) (x, t)

(x, t) (x, t) (x, t) (x, t)

(x, t) (x, t) (x, t) (x, t)

(y, t+1) (x, t) (x, t) (x, t)

(y, t+1) (y, t+1) (y, t+1) (y, t+1)

(x, t) (x, t) (x, t) (x, t)

(x, t) (x, t) (x, t) (x, t)

SRSW Atomic à MRSW Atomic
• Read(): // by reader j (j=3 in example)

read entire column j

write row j with highest ts pair

return the value with highest ts

33

(y, t+1) (x, t) (x, t) (x, t)

(y, t+1) (y, t+1) (y, t+1) (y, t+1)

(y, t+1) (y, t+1) (x, t) (y, t+1)

(x, t) (x, t) (x, t) (x, t)

(y, t+1) (x, t) (x, t) (x, t)

(y, t+1) (y, t+1) (y, t+1) (y, t+1)

(x, t) (x, t) (x, t) (x, t)

(x, t) (x, t) (x, t) (x, t)

SRSW Atomic à MRSW Atomic

• Proof of atomicity similar:
–Construct S’ by ordering ops by ts, put W

before R, earlier R before later R

–Argue the three conditions for atomicity hold
• Key step: a read ensures later reads see a
value that is no older

• Efficiency:
–Memory cost: n2

–Read cost: n reads + n writes

–Write cost: n writes
34

Outline

• Types of Shared Registers

• Algorithms

– SRSW Boolean Safe à SRSW Boolean Regular

– SRSW Regular à SRSW Atomic

– SRSW à MRSW

–MRSW à MRMW

35

MRSW Atomic à MRMW Atomic
• Allocate one MRSW atomic register per writer

• Augment with ts

Write(x): // by writer i

Read all registers to find max_ts

reg[i] = (max_ts+1, x);

Read():

Read all registers

Return value with max ts
36

MRSW Atomic à MRMW Atomic
• Can two writes have the same ts?

• Yes! Break ties deterministically using proc ID

Write(x): // by writer i

Read all registers to find max_ts

reg[i] = (max_ts+1, x);

Read():

Read all registers

Return value with max ts
37

(ts, writer proc ID)

MRSW Atomic à MRMW Atomic
• Proof: construct S’ by ordering all writes by

(ts, writer proc ID)

• Put each read after the write it reads from,
earlier read before later read

• By construction, every op followed by
response, and read returns preceding write

• Remains to prove real-time order respected

38

MRSW Atomic à MRMW Atomic
• Remains to prove real-time order respected
– Case 1: W1 ends before W2 begins

à W2 reads local copy updated by W1 & increments ts

à ts of W1 < ts of W2 à W1 before W2 in S’

– Case 2: W ends before R begins à R sees (ts, WID)
of W or higher à R after W in S’

– Case 3: R ends before W begins à W sees (ts, WID)
that R reads from or higher, and then increments ts
à ts of R < ts of W à R before W in S’

– Case 4: R1 ends before R2 begins à R2 sees (ts, WID)
that R1 reads from or higher à R2 after R1 in S’

39

Summary

• The strongest register can be built from
the weakest with wait-freedom
– SRSW safe à* regular à atomic

*only showed binary

– SRSW à MRSW à MRMW

–… also with high costs

40

