
Lecture 17-18: Mutual Exclusion

CS 539 / ECE 526

Distributed Algorithms

Mutual Exclusion
• Process A

non-critical section

critical section

remainder section

repeat (possibly)

2

• Process B
non-critical section

critical section

remainder section

repeat (possibly)

• Examples:
Delete p in link list Delete p’s parent

Balance += 100 Balance += 200

Sell last seat to A Sell last seat to B

Outline

•Mutual exclusion problem definition

• Using strong primitives

– Test-and-Set

– Atomic queue and Read-Modify-Write

• Using shared registers

– Using atomic registers: Peterson

– Using safe registers: Bakery

• Fast Mutex
3

Mutual Exclusion (Mutex)
• Process A

entry

critical section

exit

remainder section

repeat (possibly)

4

• Process B
entry

critical section

exit

remainder section

repeat (possibly)

• Entry: request to enter critical section,
coordinate with other threads

• Exit: clean-up work

An Easy Problem?
• Process A

Lock.lock()

critical section

Lock.unlock()

remainder section

repeat (possibly)

5

• Process B
Lock.lock()

critical section

Lock.unlock()

remainder section

repeat (possibly)

• Not a solution: have to solve the mutex
problem to build a lock / semaphore

Mutual Exclusion [Dijkstra 1965]

• n processes may request exclusive right to
enter critical section

• Safety (mutual exclusion): at most one
process in critical section

• Liveness: no deadlock (next slide)

• Fairness: several variants (next slide)

6

Mutual Exclusion Fairness
• Deadlock free: if a process is in entry,

eventually some process is in critical section
– No fairness guarantee

• Starvation free: if a process is in entry,
eventually that process is in critical section

• Bounded waiting: if a process is in entry, it is
in critical section before a bounded number of
times that other processes in critical section

7

Problem Definition Remark
• An implied requirement: the mutex algorithm

is entirely implemented in entry & exit
– Remainder (non-critical) section is unchanged app

code

• Token ring and certain other practical
algorithms disqualified
– Cannot expect a process to participate in mutex if

it is uninterested

8

Token Ring Algorithm
var token[n]; // initialized to {1, 0, 0, …, 0}

// code for process i

while (token[i] == 0) no-op; // not my turn, wait

critical section;

token[i] = 0;

token[i+1] = 1;

remainder section

repeat (possibly)

9

Efficiency Metrics

• A mutex algorithm often infinitely spins on a

register, so we will not focus on cost of

computation or memory access

• Instead, we will focus on space complexity

(e.g., number of registers used)

10

Outline

•Mutual exclusion problem definition

• Using strong primitives

– Test-and-Set

– Atomic queue and Read-Modify-Write

• Using shared registers

– Using atomic registers: Peterson

– Using safe registers: Bakery

• Fast Mutex
11

Test-and-Set
• A test-and-set variable V stores a binary value

(0 or 1) and supports two (atomic) operations:

reset(V): // set value to 0
V = 0

test&set(V): // set value to 1 and return old value

tmp = V

V = 1

return tmp

12

Mutex using Test-and-Set
• Entry: repeat t = test&set(V) until (t == 0)

• Exit: reset(V)

• Intuition: when multiple processes compete,
only one process wins (sees V=0)

13

Mutual Exclusion (Safety)
• Proof: Consider the first time mutual exclusion

is violated: proc pj enters Critical Section (CS)
when proc pi is already in CS

14

pi enters CS:
sees V = 0,
sets V to 1

pj enters CS:
sees V = 0,
sets V to 1

no process leaves CS
(because of first violation),
so V stays 1

impossible!

Deadlock Free (Liveness)
• Lemma: V = 0 iff no process in critical section
– Successful entry à Exit à Successful entry à Exit …

– V: 0 à 1 à 0 à 1 à 0 …

• Suppose deadlocks, process i in entry but no
process enters CS ever after
– Eventually, process in CS exits à V = 0 (by Lemma)

– Process i enters, contradiction

• How about starvation freedom?

15

No.

Mutex using Atomic Queue
• Entry: enqueue(Q, i) // code for process I

while (head(Q) != i) no-op;

• Exit: dequeue(Q)

• First-come-first-serve, best fairness possible
– Satisfy starvation free and bounded waiting

• Atomic queue feels like a very strong primitive

16

Read-Modify-Write (RMW)
• Supports regular read

• Supports RMW(V, f): in one atomic step

– Read current value

– Compute certain function(s) of current value

– Update value

tmp = V;

V = f(V);

return V;

17

Mutex using RMW
• V = (head, tail) // initially equal

• enqueue(V) = (V.head, V.tail+1)

• dequeue(V) = (V.head+1, V.tail)

• Entry: pos = RMW(V, enqueue)

while (V.head != pos.tail) no-op;

• Exit: RMW(V, dequeue)

18

Mutex using RMW Proof & Remark
• Mutual exclusion (safety) proof:
– Each process has a unique pos.tail

– Only the proc whose pos.tail == V.head can be in CS

• Liveness/fairness proof:
– Bounded waiting: pos.tail – V.head

• Remark: did not actually implement a queue,
since no data is stored; weaker primitive than
atomic queue, available in real processors

19

Outline

•Mutual exclusion problem definition

• Using strong primitives

– Test-and-Set

– Atomic queue and Read-Modify-Write

• Using shared registers

– Using atomic registers: Peterson

– Using safe registers: Bakery

• Fast Mutex
20

Mutex using Atomic Registers

• Simplest mutex algorithm by Peterson in 1981

• For 2 procs only, can be extended to n procs

• Uses three atomic registers

– Two single-writer two-reader: want[]

– One two-writer two-reader: turn

21

Peterson Algorithm
• Process 0

// entry

want[0] = true

turn = 1; // you go first

while (turn == 1 &&
want[1] == true)

no-op; // wait

critical section

// exit

want[0] = false
22

• Process 1

// entry

want[1] = true

turn = 0; // you go first

while (turn == 0 &&
want[0] == true)

no-op; // wait

critical section

// exit

want[1] = false

Peterson Safety Proof
• Consider the first time mutual exclusion is

violated: proc pj enters Critical Section (CS)
when proc pi is already in CS

23

pi enters CS

pj enters CSpj sets
turn = i

pi sets
want[i]
to true

want[i] remains true

seeing turn = j

pi sets
turn = j

want[j] == true
&& turn == j ???

Contradiction

pj sets
want[j]
to true

Peterson Fairness Proof

• Peterson lock achieves bounded waiting

• Proof: pi stuck in entry only if it sees

want[j] == true && turn = j

• pj enters or is already in CS, eventually exits

• pj in entry again, sets turn = i

• pi enters CS

24

Tournament Tree
• From 2-process mutex to n-process mutex

• Space complexity: 3(n-1) Boolean atomic
registers

25

1

2 3

4 5 6 7

p0, p1 p2, p3 p4, p5 p6, p7

Bakery Algorithm
• Lamport, 1974

• Solves n-process mutex

• Uses 2n single-writer safe registers

• Intuition: each customer gets ticket in entry,

smallest ticket gets served first

– DMV algorithm may relate better for U.S.

26

Bakery Algorithm
var choosing[n], number[n]; // one per process, initialized to 0

// entry code for process i

choosing[i] = true;

number[i] = 1 + max(number[1], number[2], … number[n]);

choosing[i] = false;

for j = 1:n // wait for everyone who may come before me

while (choosing[j]) no-op;

while (number[j] != 0 && (number[j], j) < (number[i], i)) no-op;

end for

critical section;

number[i] = 0; // exit

27

Bakery Safety Proof
• Lemma 1: If pi in CS, then number[i] > 0
– Straightforward, no other process writes number[i]

• Lemma 2: If pi in CS, then for all j ≠ i, either
number[j] == 0 or (number[j], j) > (number[i], i)
– pi saw the condition held

– If pi saw the latter was true, it will remain true until
• pj resets number[j] to 0

• Next time pj chooses number[j] > number[i]

– Can focus on the other case (next slide)

29

Bakery Safety Proof
• Lemma 2: If pi in CS, then for all j ≠ i, either

number[j] == 0 or (number[j], j) > (number[i], i)

30

pi enters
CS

pi sees
number[j] = 0

pj sets
number[j] > 0

pi sees
choosing[j]

= false

pi finishes
choosing
number[i]

a stable 0
or

a transient 0
(overlapping write
to safe register)

Bakery Safety Proof
• Lemma 2: If pi in CS, then for all j ≠ i, either

number[j] == 0 or (number[j], j) > (number[i], i)

31

pi enters
CS

pi sees
number[j] = 0

pj sets
number[j] > 0

pi sees
choosing[j]

= false

pi finishes
choosing
number[i]

pj is in remainder
or

pj is choosing a number

pj choosing number[j] in
one of these two windows

p
j sees number[i]

and chooses

number[j] > number[i]

Bakery Safety Proof
• Lemma 1: If pi in CS, then number[i] > 0
– Straightforward, no other process writes number[i]

• Lemma 2: If pi in CS, then for all j ≠ i, either
number[j] == 0 or (number[j], j) > (number[i], i)

• If pi and pj are both in CS, then number[i] and
number[j] are both positive, and

(number[j], j) >< (number[i], i)

32

Bakery Fairness Proof
• Starvation freedom: eventually, every pj with a

smaller (number[j], j) enters and exits CS

• Bounded waiting: n

33

Bakery Algorithm Pros and Cons
• Use weak (single-writer, safe) registers
– Historic significance: first mutex solution without

assuming lower-level atomicity

• Atomic ≈ mutex
• Atomic register ≈ mutex for read/write

• Exercise: where did Peterson rely on atomicity?

– Modern view: atomic register expensive to build

• Infinite-sized variables number[]
– Possible (but very hard) to avoid

– Not an issue in practice
34

Outline

•Mutual exclusion problem definition

• Using strong primitives

– Test-and-Set

– Atomic queue and Read-Modify-Write

• Using shared registers

– Using atomic registers: Peterson

– Using safe registers: Bakery

• Fast Mutex
35

Fast Mutex [Lamport, 1987]

• In the two n-process mutex algorithms we’ve

seen so far (tournament tree & bakery), a proc

spends O(log n) or O(n) time before entering

CS even when there is no contention

36

Fast Mutex [Lamport, 1987]

• Fast mutex: O(1) time if no contention

• Must use multi-writer registers

– Each proc must leave some trace of entering CS

– If each register has a single writer, must read n

registers to make sure no process already in CS

37

Fast Mutex using Splitter

• Idea: fast-forward at most one process (to CS),

other procs (if any) run n-proc mutex

• A splitter should guarantee

– At most one winner

– If a process runs alone, it wins

• If there is contention, possibly no winner

38

Fast Mutex using Splitter

39

Splitter

n-proc mutex

2-proc mutex

critical section

lose

win

play role of p0 play role of p1

Borrowed from Jennifer Welch’s slides of CSCE 668 at Texas A&M

// two MRMW atomic register, re-initialize in exit

var door = “open”, winner = -1;

// entry code for process i

winner = i

if (door == “closed”) return “lose”

else

door = “closed”

if (winner == id) return “win”

else return “lose”
40

Splitter [Moir-Anderson, 1995]

Splitter Sample Execution

41

p1 p2 p3

winner = 1

winner = 2

door == open

door == open

close door

door = closed

winner == 2
& lose

winner == 2
& win

winner = 3

door == closed
& lose

Borrowed from Jennifer Welch’s slides of CSCE 668 at Texas A&M

Splitter Proofs

• Liveness: if pi executes alone, pi wins

– Can easily verify

• Safety: at most one process wins

– Proof: let pi be the last process to update winner

before door is set to “closed”; no other pj can win

• pj sees door closed à lose

• pj sees door open à pj write winner before pi à

pj sees a different winner once in the door à lose

42

Remarks

• Exit section must reset splitter

• Modular algorithm, can plug in any 2-proc and

n-proc mutex algorithms

– But if applied to Bakery, lose the advantage of using

single-writer safe registers only

• Not adaptive: even if two processes contend,

may have to run the expensive n-proc mutex

43

Mutual Exclusion Summary

• Basic problem in distributed computing

• Practical solutions: test-and-set, RMW

• Theoretically better solutions: Peterson,

Tournament tree, Bakery, fast mutex

44

