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Mutual Exclusion
• Process A

non-critical section

critical section

remainder section 

repeat (possibly)
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• Process B
non-critical section

critical section 

remainder section

repeat (possibly)

• Examples:
Delete p in link list Delete p’s parent

Balance += 100 Balance += 200

Sell last seat to A Sell last seat to B



Outline

•Mutual exclusion problem definition

• Using strong primitives

– Test-and-Set

– Atomic queue and Read-Modify-Write

• Using shared registers

– Using atomic registers: Peterson

– Using safe registers: Bakery

• Fast Mutex
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Mutual Exclusion (Mutex)
• Process A

entry

critical section

exit

remainder section

repeat (possibly)
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• Process B
entry

critical section

exit

remainder section

repeat (possibly)

• Entry: request to enter critical section, 
coordinate with other threads

• Exit: clean-up work  



An Easy Problem?
• Process A

Lock.lock()

critical section

Lock.unlock()

remainder section

repeat (possibly)

5

• Process B
Lock.lock()

critical section

Lock.unlock()

remainder section

repeat (possibly)

• Not a solution: have to solve the mutex 
problem to build a lock / semaphore



Mutual Exclusion [Dijkstra 1965]

• n processes may request exclusive right to 
enter critical section

• Safety (mutual exclusion): at most one 
process in critical section

• Liveness: no deadlock (next slide)

• Fairness: several variants (next slide)
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Mutual Exclusion Fairness
• Deadlock free: if a process is in entry, 

eventually some process is in critical section
– No fairness guarantee

• Starvation free: if a process is in entry, 
eventually that process is in critical section

• Bounded waiting: if a process is in entry, it is 
in critical section before a bounded number of 
times that other processes in critical section
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Problem Definition Remark
• An implied requirement: the mutex algorithm 

is entirely implemented in entry & exit
– Remainder (non-critical) section is unchanged app 

code

• Token ring and certain other practical 
algorithms disqualified
– Cannot expect a process to participate in mutex if 

it is uninterested
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Token Ring Algorithm
var token[n]; // initialized to {1, 0, 0, …, 0}

// code for process i

while ( token[i] == 0 )  no-op; // not my turn, wait

critical section;

token[i] = 0;

token[i+1] = 1;

remainder section

repeat (possibly)
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Efficiency Metrics

• A mutex algorithm often infinitely spins on a 

register, so we will not focus on cost of 

computation or memory access

• Instead, we will focus on space complexity  

(e.g., number of registers used)
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Outline

•Mutual exclusion problem definition

• Using strong primitives

– Test-and-Set

– Atomic queue and Read-Modify-Write

• Using shared registers

– Using atomic registers: Peterson

– Using safe registers: Bakery

• Fast Mutex
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Test-and-Set
• A test-and-set variable V stores a binary value 

(0 or 1) and supports two (atomic) operations:

reset(V):  // set value to 0
V = 0 

test&set(V): // set value to 1 and return old value

tmp = V

V = 1

return tmp
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Mutex using Test-and-Set
• Entry:  repeat  t = test&set(V)  until (t == 0)

• Exit: reset(V)

• Intuition: when multiple processes compete, 
only one process wins (sees V=0)
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Mutual Exclusion (Safety)
• Proof: Consider the first time mutual exclusion 

is violated: proc pj enters Critical Section (CS) 
when proc pi is already in CS
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pi enters CS:
sees V = 0,
sets V to 1

pj enters CS:
sees V = 0,
sets V to 1

no process leaves CS 
(because of first violation), 
so V stays 1

impossible!



Deadlock Free (Liveness)
• Lemma: V = 0 iff no process in critical section
– Successful entry à Exit à Successful entry à Exit …

– V: 0 à 1 à 0     à 1 à 0 …

• Suppose deadlocks, process i in entry but no 
process enters CS ever after
– Eventually, process in CS exits à V = 0 (by Lemma)

– Process i enters, contradiction

• How about starvation freedom? 
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Mutex using Atomic Queue
• Entry:  enqueue(Q, i) // code for process I

while ( head(Q) != i ) no-op;

• Exit: dequeue(Q)

• First-come-first-serve, best fairness possible
– Satisfy starvation free and bounded waiting

• Atomic queue feels like a very strong primitive
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Read-Modify-Write (RMW)
• Supports regular read

• Supports RMW(V, f): in one atomic step 

– Read current value

– Compute certain function(s) of current value 

– Update value

tmp = V;

V = f(V);

return V;
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Mutex using RMW
• V = (head, tail) // initially equal

• enqueue(V) = (V.head, V.tail+1)

• dequeue(V) = (V.head+1, V.tail)

• Entry: pos = RMW(V, enqueue)

while ( V.head != pos.tail ) no-op;

• Exit: RMW(V, dequeue)
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Mutex using RMW Proof & Remark
• Mutual exclusion (safety) proof:
– Each process has a unique pos.tail

– Only the proc whose pos.tail == V.head can be in CS

• Liveness/fairness proof: 
– Bounded waiting: pos.tail – V.head

• Remark: did not actually implement a queue, 
since no data is stored; weaker primitive than 
atomic queue, available in real processors
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Outline

•Mutual exclusion problem definition

• Using strong primitives

– Test-and-Set

– Atomic queue and Read-Modify-Write

• Using shared registers

– Using atomic registers: Peterson

– Using safe registers: Bakery

• Fast Mutex
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Mutex using Atomic Registers

• Simplest mutex algorithm by Peterson in 1981

• For 2 procs only, can be extended to n procs

• Uses three atomic registers

– Two single-writer two-reader: want[]

– One two-writer two-reader: turn
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Peterson Algorithm
• Process 0

// entry

want[0] = true

turn = 1; // you go first

while (turn == 1 && 
want[1] == true)

no-op; // wait

critical section

// exit

want[0] = false
22

• Process 1

// entry

want[1] = true

turn = 0; // you go first

while (turn == 0 && 
want[0] == true)

no-op; // wait

critical section

// exit

want[1] = false



Peterson Safety Proof
• Consider the first time mutual exclusion is 

violated: proc pj enters Critical Section (CS) 
when proc pi is already in CS
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pi enters CS

pj enters CSpj sets 
turn = i

pi sets 
want[i] 
to true

want[i] remains true 

seeing turn = j

pi sets 
turn = j

want[j] == true 
&& turn == j ???

Contradiction

pj sets 
want[j] 
to true



Peterson Fairness Proof

• Peterson lock achieves bounded waiting

• Proof: pi stuck in entry only if it sees 

want[j] == true && turn = j

• pj  enters or is already in CS, eventually exits

• pj in entry again, sets turn = i

• pi  enters CS
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Tournament Tree
• From 2-process mutex to n-process mutex

• Space complexity: 3(n-1) Boolean atomic 
registers
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1

2 3

4 5 6 7

p0, p1 p2, p3 p4, p5 p6, p7



Bakery Algorithm
• Lamport, 1974 

• Solves n-process mutex

• Uses 2n single-writer safe registers

• Intuition: each customer gets ticket in entry, 

smallest ticket gets served first

– DMV algorithm may relate better for U.S.
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Bakery Algorithm
var choosing[n], number[n]; // one per process, initialized to 0

// entry code for process i

choosing[i] = true; 

number[i] = 1 + max(number[1], number[2], … number[n]);

choosing[i] = false;

for j = 1:n // wait for everyone who may come before me

while ( choosing[j] )  no-op;

while ( number[j] != 0 && ( number[j], j ) < ( number[i], i) ) no-op;

end for

critical section;

number[i] = 0; // exit
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Bakery Safety Proof
• Lemma 1: If pi in CS, then number[i] > 0 
– Straightforward, no other process writes number[i]

• Lemma 2: If pi in CS, then for all j ≠ i, either 
number[j] == 0 or (number[j], j) > (number[i], i)
– pi saw the condition held

– If pi  saw the latter was true, it will remain true until
• pj resets number[j] to 0 

• Next time pj chooses number[j] > number[i]

– Can focus on the other case (next slide)
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Bakery Safety Proof
• Lemma 2: If pi in CS, then for all j ≠ i, either 

number[j] == 0 or (number[j], j) > (number[i], i)
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pi enters 
CS

pi sees 
number[j] = 0

pj sets 
number[j] > 0

pi sees 
choosing[j] 

= false

pi finishes 
choosing 
number[i]

a stable 0
or

a transient 0 
(overlapping write 
to safe register)



Bakery Safety Proof
• Lemma 2: If pi in CS, then for all j ≠ i, either 

number[j] == 0 or (number[j], j) > (number[i], i)
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pi enters 
CS

pi sees 
number[j] = 0

pj sets 
number[j] > 0

pi sees 
choosing[j] 

= false

pi finishes 
choosing 
number[i]

pj  is in remainder
or

pj  is choosing a number

pj choosing number[j] in 
one of these two windows 

p
j sees number[i]  

and chooses 

number[j] > number[i] 



Bakery Safety Proof
• Lemma 1: If pi in CS, then number[i] > 0 
– Straightforward, no other process writes number[i]

• Lemma 2: If pi in CS, then for all j ≠ i, either 
number[j] == 0 or (number[j], j) > (number[i], i)

• If pi and pj are both in CS, then number[i] and 
number[j] are both positive, and

(number[j], j) >< (number[i], i)
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Bakery Fairness Proof
• Starvation freedom: eventually, every pj with a 

smaller (number[j], j) enters and exits CS

• Bounded waiting: n
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Bakery Algorithm Pros and Cons
• Use weak (single-writer, safe) registers
– Historic significance: first mutex solution without 

assuming lower-level atomicity

• Atomic ≈ mutex
• Atomic register ≈ mutex for read/write

• Exercise: where did Peterson rely on atomicity?

– Modern view: atomic register expensive to build

• Infinite-sized variables number[]
– Possible (but very hard) to avoid 

– Not an issue in practice
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Outline

•Mutual exclusion problem definition

• Using strong primitives

– Test-and-Set

– Atomic queue and Read-Modify-Write

• Using shared registers

– Using atomic registers: Peterson

– Using safe registers: Bakery

• Fast Mutex
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Fast Mutex [Lamport, 1987]

• In the two n-process mutex algorithms we’ve 

seen so far (tournament tree & bakery), a proc 

spends O(log n) or O(n) time before entering 

CS even when there is no contention
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Fast Mutex [Lamport, 1987]

• Fast mutex: O(1) time if no contention

• Must use multi-writer registers

– Each proc must leave some trace of entering CS

– If each register has a single writer, must read n

registers to make sure no process already in CS
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Fast Mutex using Splitter

• Idea: fast-forward at most one process (to CS), 

other procs (if any) run n-proc mutex

• A splitter should guarantee

– At most one winner

– If a process runs alone, it wins 

• If there is contention, possibly no winner
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Fast Mutex using Splitter

39

Splitter

n-proc mutex

2-proc mutex

critical section

lose

win

play role of p0 play role of p1

Borrowed from Jennifer Welch’s slides of CSCE 668 at Texas A&M



// two MRMW atomic register, re-initialize in exit

var door = “open”, winner = -1;

// entry code for process i

winner = i

if (door == “closed”) return “lose”

else

door = “closed”

if (winner == id) return “win”

else return “lose”
40

Splitter [Moir-Anderson, 1995] 



Splitter Sample Execution
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p1 p2 p3

winner = 1

winner = 2

door == open

door == open

close door

door = closed

winner == 2 
& lose

winner == 2 
& win

winner = 3

door == closed 
& lose

Borrowed from Jennifer Welch’s slides of CSCE 668 at Texas A&M



Splitter Proofs

• Liveness: if pi executes alone, pi wins

– Can easily verify

• Safety: at most one process wins

– Proof: let pi be the last process to update winner

before door is set to “closed”; no other pj can win

• pj  sees door closed à lose

• pj  sees door open à pj write winner before pi à

pj  sees a different winner once in the door à lose
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Remarks 

• Exit section must reset splitter

• Modular algorithm, can plug in any 2-proc and 

n-proc mutex algorithms

– But if applied to Bakery, lose the advantage of using 

single-writer safe registers only

• Not adaptive: even if two processes contend, 

may have to run the expensive n-proc mutex
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Mutual Exclusion Summary

• Basic problem in distributed computing

• Practical solutions: test-and-set, RMW

• Theoretically better solutions: Peterson, 

Tournament tree, Bakery, fast mutex
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