

Lecture 19: Wait-free Hierarchy

CS 539 / ECE 526 Distributed Algorithms

Atomic Objects

- We have seen many (atomic) objects:
 - -Many types of shared (read/write) registers
 - -Test-and-Set
 - Read-Modify-Write
 - -Atomic queue

.

• Can we use one type of object to implement another?

Generic Method 1

- Mutual exclusion gives a way to implement *any* atomic object
 - Mutex can be solved with atomic or safe read/write registers

• Ensures all operations are *sequential*, hence non-overlapping and linearizable

Downside: slow and not fault tolerant

Today

- Can we use one type of object to implement another with wait-freedom?
 - -Wait-free == tolerate all but one crashes
 - -We have seen wait-free implementations of "stronger" registers using "weaker" ones
 - -Are there wait-free implementations of other (atomic) objects (e.g., atomic queues, RMW)?

Outline

- Wait-free hierarchy
- Consensus numbers of
 - -Read/write registers
 - -Queues
 - -Compare-and-Swap

Generic Method 2

- Use a consensus / replication algorithm to agree on the sequence of operations
 - -Replicate the object at every process
 - -Agree (totally order) all the operations
 - -Apply operations locally in the agreed order

• Wait-free if consensus algo is wait-free -But is wait-free consensus itself possible?

Wait-free Hierarchy [Herlihy, 1991]

- If object Y can be used to solve wait-free
 consensus in some setting but object X
 cannot, then there exists no wait-free
 implementation of Y from X in that
 setting
 - -Note: consensus means agreement in the discussion of wait-free hierarchy

What Settings?

- We already specified most of the model:
 - -Shared memory
 - -Asynchrony
 - -Wait-free (tolerate all but one crash)
 - -Let's also restrict to deterministic case
- Number of processes turn out to be key!

Wait-free Hierarchy [Herlihy, 1991]

- If object Y can be used to solve wait-free
 consensus with *n* processes but object X
 - cannot, then there exists no wait-free
 - implementation of Y from X with n procs

Consensus Number [Herlihy, 1991]

- Definition: The consensus number of an object is the largest number *n* for which *n*-proc wait-free consensus can be solved using that object plus registers – *n*-proc solvable, (n+1)-proc unsolvable
 - -Can use many instances of X plus multivalued MRMW read/write atomic registers

Consensus Number of Common Objects

Objects	Consensus Number
Read/write atomic registers	I
Queue, stack, Test-and-Set,	2
Compare-and-Swap, queue with peek,	Ø

Wait-free Hierarchy

 If object Y has consensus number n and object X has consensus number m < n, there exists no wait-free implementation of Y from X and registers in a system with >m processes

Outline

- Wait-free hierarchy
- Consensus numbers of
 - -Read/write registers
 - -Queues
 - -Compare-and-Swap

• CN of any object is at least 1 because

one-proc consensus is trivial

 Theorem 1: there exists no wait-free consensus algorithm for two processes using only read/write atomic registers.

Recall Configurations

- Union of the states of all parties
- A protocol execution is an evolution of configurations: $C_0 \rightarrow C_1 \rightarrow C_2 \dots$

 In async msg passing, config evolves after each msg arrival

Configurations in Shared Memory

- Union of states of all procs & all objects
- In async shared memory with atomic objects, config evolves after every atomic operation
- As before, for *concurrent* operations, the order to apply them does not matter
- One operation *happens before* another if
 - They are performed by the same process; or
 - They access the same object, and at least one of them *updates* the object; or
 - Due to transitivity

Recall Valency

• A config C is **0-valent**, if in all configs reachable from C, processes decide 0

- No matter what happens from now on, decide 0

- A config C is 1-valent, if, all decide 1
- Univalent = 0-valent or 1-valent
- **Bivalent** = not univalent

Critical Configuration

- A configuration is *critical* if it is bivalent, and all its successor configurations are univalent
 - In general, may not exist, hence uninteresting
 - But must exist in a wait-free consensus algorithm!

 Alternative definition of wait-free: every process terminates in finite number of steps

Critical Configuration

- Lemma: Every wait-free consensus algorithm has a critical configuration.
 - Proof: Suppose not. Every bivalent config has a bivalent successor config
 - There exists an initial bivalent config (Lecture 8)
 - There is an infinite run
 - At least one process took infinitely many steps
 - Not wait free. QED.

- Theorem 1: no wait-free consensus algorithm for 2 procs using only r/w atomic registers.
 - Proof: Suppose for contradiction that there is such an algorithm for two processes A and B
 - Let it run to a critical config S
 - The next op by A or B leads to univalency
 - Critical config S is bivalent \rightarrow has both evolutions
 - WLOG, $S \rightarrow_A 0$ -valent, $S \rightarrow_B 1$ -valent

- Let us consider these two next ops of A and B

- Critical config S, S \rightarrow_A 0-valent, S \rightarrow_B 1-valent
- Cannot be concurrent ops
- Must access same register & at least one is write

Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

- Critical config S, S \rightarrow_A 0-valent, S \rightarrow_B 1-valent
- Case 1: one process reads, (WLOG A reads)

Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

- Critical config S, S \rightarrow_A 0-valent, S \rightarrow_B 1-valent
- Case 1: one process reads, (WLOG A reads)
- Case 2: both write same register

Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

- Theorem 1: no wait-free consensus algorithm for 2 procs using only r/w atomic registers.
 - Proof: Suppose for contradiction that there is such an algorithm for two processes A and B
 - Let it run to a critical config S
 - The next op by A or B leads to univalency
 - Critical config S is bivalent \rightarrow has both evolutions
 - WLOG, $S \rightarrow_A 0$ -valent, $S \rightarrow_B 1$ -valent
 - We considered these two next ops of A and B and got contradictions in all cases, QED

Outline

- Wait-free hierarchy
- Consensus numbers of
 - -Read/write registers
 - -Queues
 - -Compare-and-Swap

Atomic Queue

- Same interface of basic queue
 - -Supports atomic enqueue() and dequeue() by at least two processes
 - Does not support peek()

-dequeue() on an empty queue returns \perp

CN of Queue = 2

 Theorem 2.1: there is a wait-free consensus algorithm for two processes using a queue (assuming required initial state)

 Theorem 2.2: there is no wait-free consensus algorithm for three processes using queues and atomic read/write registers

• Theorem 2.1: wait-free 2-proc consensus algo using a queue (with good initial state)

// Queue initialized with one element, two SW register Initially Q = ["winner"], Prefer[2] = $[\bot, \bot]$;

```
// code for process i, with input x<sub>i</sub>
Prefer[i] = x<sub>i</sub>
if dequeue(Q) == "winner"
    output Prefer[i];
else output Prefer[1-i];
```

- Theorem 2.2: no wait-free 3-proc consensus algo using queues and r/w atomic registers
 - Proof: Suppose for contradiction that there is such an algorithm for three processes A, B, and C
 - Critical config S, WLOG, S \rightarrow_A 0-valent, S \rightarrow_B 1-valent
 - These 2 next ops of A and B cannot be concurrent
 - If accessing same register, same proof as before
 - Must access the same queue, and at least one of them updates the queue
 - Both enqueue and dequeue update the queue

– Critical config S, S \rightarrow_A 0-valent, S \rightarrow_B 1-valent – Case 1: A and B both dequeue

Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

- Critical config S, S \rightarrow_A 0-valent, S \rightarrow_B 1-valent
- Case 1: A and B both dequeue
- Case 2: A enqueues and B dequeues (or vice versa)
 - If queue is not empty, end results are the same
 - If queue is empty,

A enqueue == B dequeue then A enqueue

• In either case, C cannot distinguish if it runs solo

- Critical config S, S \rightarrow_A 0-valent, S \rightarrow_B 1-valent
- Case 1: A and B both dequeue
- Case 2: A enqueues and B dequeues (or vice versa)
- Case 3: A and B both enqueue
 - C can distinguish the two resulting configs
 - ... if and only if C dequeues
 - Same applies to A and B!

Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

- Theorem 2.2: no wait-free 3-proc consensus algo using queues and r/w atomic registers
 - Proof: Suppose for contradiction that there is such an algorithm for three processes A, B, and C
 - Critical config S, WLOG, S \rightarrow_A 0-valent, S \rightarrow_B 1-valent
 - These 2 next ops of A and B cannot be concurrent
 - If accessing same register, same proof as before
 - Must access the same queue, and at least one of them updates the queue
 - Both enqueue and dequeue update the queue
 - Got contradictions in all cases, QED

Outline

- Wait-free hierarchy
- Consensus numbers of
 - -Read/write registers
 - -Queues
 - -Compare-and-Swap

Compare-and-Swap

Interface

-Stores a value V, supports read(V), and the following atomic operation

compare&swap(V, old, new):

```
tmp = V
if (tmp == old)
V = new
return tmp
```

CN of Compare-and-Swap = ∞

• Theorem 3: there is a wait-free consensus algo for *n* procs for all *n* using Compare-and-Swap

Initially V = ⊥ // Compare-and-Swap object

// code for process i, with input $x_i \neq \bot$ val = compare&swap(V, old= \bot , new= x_i) if (val == \bot) // process i is 1st output x_i else output val

Summary

- Wait-free hierarchy answers if object Y has wait-free implementation from object X
- Classify "strength" using consensus numbers: max # of procs for solving wait-free consensus

Objects	Consensus number
Read/write atomic registers	I
Queue, stack, Test-and-Set,	2
Compare-and-Swap, queue with peek,	00