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Atomic Objects

•We have seen many (atomic) objects:
–Many types of shared (read/write) registers

–Test-and-Set

–Read-Modify-Write

–Atomic queue

–……

• Can we use one type of object to 
implement another?
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Generic Method 1

•Mutual exclusion gives a way to 
implement any atomic object
–Mutex can be solved with atomic or safe 

read/write registers

• Ensures all operations are sequential, 
hence non-overlapping and linearizable

• Downside: slow and not fault tolerant 
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Today

• Can we use one type of object to 
implement another with wait-freedom?
–Wait-free == tolerate all but one crashes

–We have seen wait-free implementations of 
“stronger”  registers using “weaker” ones

–Are there wait-free implementations of other 
(atomic) objects (e.g., atomic queues, RMW)?
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Outline

•Wait-free hierarchy

• Consensus numbers of

–Read/write registers 

–Queues

–Compare-and-Swap
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Generic Method 2

• Use a consensus / replication algorithm 
to agree on the sequence of operations
–Replicate the object at every process 

–Agree (totally order) all the operations

–Apply operations locally in the agreed order

•Wait-free if consensus algo is wait-free
–But is wait-free consensus itself possible?
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Wait-free Hierarchy [Herlihy, 1991]

• If object Y can be used to solve wait-free 

consensus in some setting but object X 

cannot, then there exists no wait-free 

implementation of Y from X in that 

setting

–Note: consensus means agreement in the 

discussion of wait-free hierarchy 
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What Settings?

•We already specified most of the model:

– Shared memory

–Asynchrony

–Wait-free (tolerate all but one crash)

– Let’s also restrict to deterministic case

• Number of processes turn out to be key!
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Wait-free Hierarchy [Herlihy, 1991]

• If object Y can be used to solve wait-free 

consensus with n processes but object X 

cannot, then there exists no wait-free 

implementation of Y from X with n procs 
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Consensus Number [Herlihy, 1991]

• Definition: The consensus number of an 

object is the largest number n for which 

n-proc wait-free consensus can be solved

using that object plus registers

–n-proc solvable, (n+1)-proc unsolvable

–Can use many instances of X plus multi-

valued MRMW read/write atomic registers
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Consensus Number of 
Common Objects
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Objects
Consensus 
Number

Read/write atomic registers 1

Queue, stack, Test-and-Set, … 2

Compare-and-Swap, queue with peek, … ∞



Wait-free Hierarchy

• If object Y has consensus number n and 

object X has consensus number m < n, 

there exists no wait-free implementation 

of Y from X and registers in a system 

with >m processes 
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Outline

•Wait-free hierarchy

• Consensus numbers of

–Read/write registers 

–Queues

–Compare-and-Swap
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CN of Read/Write Registers = 1

• CN of any object is at least 1 because 

one-proc consensus is trivial

• Theorem 1: there exists no wait-free 

consensus algorithm for two processes 

using only read/write atomic registers.
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Recall Configurations

• Union of the states of all parties

• A protocol execution is an evolution of 

configurations: C0 à C1 à C2 …

• In async msg passing, config evolves after 

each msg arrival
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Configurations in Shared Memory

• Union of states of all procs & all objects

• In async shared memory with atomic objects, 
config evolves after every atomic operation

• As before, for concurrent operations, the 
order to apply them does not matter

• One operation happens before another if

– They are performed by the same process; or

– They access the same object, and at least one of 
them updates the object; or

– Due to transitivity 
17



Recall Valency

• A config C is 0–valent, if in all configs 

reachable from C, processes decide 0

– No matter what happens from now on, decide 0

• A config C is 1–valent, if ……, all decide 1

• Univalent = 0-valent or 1-valent

• Bivalent = not univalent
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Critical Configuration

• A configuration is critical if it is bivalent, and 

all its successor configurations are univalent

– In general, may not exist, hence uninteresting

– But must exist in a wait-free consensus algorithm!

• Alternative definition of wait-free: every 

process terminates in finite number of steps
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Critical Configuration

• Lemma: Every wait-free consensus algorithm 

has a critical configuration. 

– Proof: Suppose not. Every bivalent config has a 

bivalent successor config

– There exists an initial bivalent config (Lecture 8)

– There is an infinite run

– At least one process took infinitely many steps

– Not wait free. QED.
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CN of Read/Write Registers = 1
• Theorem 1: no wait-free consensus algorithm 

for 2 procs using only r/w atomic registers.
– Proof: Suppose for contradiction that there is such 

an algorithm for two processes A and B

– Let it run to a critical config S

– The next op by A or B leads to univalency

– Critical config S is bivalent à has both evolutions

– WLOG, S àA 0-valent, S àB 1-valent

– Let us consider these two next ops of A and B
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CN of Read/Write Registers = 1
– Critical config S, S àA 0-valent, S àB 1-valent

– Cannot be concurrent ops

– Must access same register & at least one is write

22Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

B accesses r1

B accesses r1

A accesses r0

A accesses r0



CN of Read/Write Registers = 1
– Critical config S, S àA 0-valent, S àB 1-valent

– Case 1: one process reads, (WLOG A reads) 

23Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

B writes

B writes

A’s read has 
no effect on B



CN of Read/Write Registers = 1
– Critical config S, S àA 0-valent, S àB 1-valent

– Case 1: one process reads, (WLOG A reads) 

– Case 2: both write same register

24Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

A’s write is immediately 
overwritten and has no 

effect



CN of Read/Write Registers = 1
• Theorem 1: no wait-free consensus algorithm 

for 2 procs using only r/w atomic registers.
– Proof: Suppose for contradiction that there is such 

an algorithm for two processes A and B

– Let it run to a critical config S

– The next op by A or B leads to univalency

– Critical config S is bivalent à has both evolutions

– WLOG, S àA 0-valent, S àB 1-valent

– We considered these two next ops of A and B and 
got contradictions in all cases, QED
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Outline

•Wait-free hierarchy

• Consensus numbers of

–Read/write registers 

–Queues

–Compare-and-Swap
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Atomic Queue

• Same interface of basic queue

– Supports atomic enqueue() and dequeue() by 

at least two processes

•Does not support peek()

–dequeue() on an empty queue returns ⊥
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CN of Queue = 2

• Theorem 2.1: there is a wait-free consensus 

algorithm for two processes using a queue 

(assuming required initial state)

• Theorem 2.2: there is no wait-free consensus 

algorithm for three processes using queues 

and atomic read/write registers
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CN of Queue ≥ 2
• Theorem 2.1: wait-free 2-proc consensus algo 

using a queue (with good initial state)

// Queue initialized with one element, two SW register

Initially Q = [“winner”],  Prefer[2] = [⊥, ⊥];

// code for process i, with input xi
Prefer[i] = xi
if dequeue(Q) == “winner”

output Prefer[i];

else output Prefer[1-i];
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CN of Queue ≤ 2
• Theorem 2.2: no wait-free 3-proc consensus 

algo using queues and r/w atomic registers
– Proof: Suppose for contradiction that there is such 

an algorithm for three processes A, B, and C

– Critical config S, WLOG, S àA 0-valent, S àB 1-valent

– These 2 next ops of A and B cannot be concurrent

– If accessing same register, same proof as before

– Must access the same queue, and at least one of 
them updates the queue

• Both enqueue and dequeue update the queue
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CN of Queue ≤ 2
– Critical config S, S àA 0-valent, S àB 1-valent

– Case 1: A and B both dequeue

31Figure from Herlihy and Shavit: The Art of Multiprocessor Programming

Indistinguishable to C



CN of Queue ≤ 2
– Critical config S, S àA 0-valent, S àB 1-valent

– Case 1: A and B both dequeue

– Case 2: A enqueues and B dequeues (or vice versa)

• If queue is not empty, end results are the same

• If queue is empty, 
A enqueue == B dequeue then A enqueue

• In either case, C cannot distinguish if it runs solo
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CN of Queue ≤ 2
– Critical config S, S àA 0-valent, S àB 1-valent

– Case 1: A and B both dequeue

– Case 2: A enqueues and B dequeues (or vice versa)

– Case 3: A and B both enqueue

• C can distinguish the two resulting configs
• … if and only if C dequeues

• Same applies to A and B!

33Figure from Herlihy and Shavit: The Art of Multiprocessor Programming



34Figure from Herlihy and Shavit: The Art of Multiprocessor Programming



CN of Queue ≤ 2
• Theorem 2.2: no wait-free 3-proc consensus 

algo using queues and r/w atomic registers
– Proof: Suppose for contradiction that there is such 

an algorithm for three processes A, B, and C

– Critical config S, WLOG, S àA 0-valent, S àB 1-valent

– These 2 next ops of A and B cannot be concurrent

– If accessing same register, same proof as before

– Must access the same queue, and at least one of 
them updates the queue

• Both enqueue and dequeue update the queue

– Got contradictions in all cases, QED
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Outline

•Wait-free hierarchy

• Consensus numbers of

–Read/write registers 

–Queues

–Compare-and-Swap
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Compare-and-Swap

• Interface

– Stores a value V, supports read(V), and the 

following atomic operation

compare&swap(V, old, new):

tmp = V

if (tmp == old) 

V = new

return tmp
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CN of Compare-and-Swap = ∞
• Theorem 3: there is a wait-free consensus algo 

for n procs for all n using Compare-and-Swap

Initially V = ⊥ // Compare-and-Swap object

// code for process i, with input xi ≠ ⊥
val = compare&swap(V, old=⊥, new=xi)

if (val == ⊥) // process i is 1st

output xi
else

output val
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Summary

• Wait-free hierarchy answers if object Y has 

wait-free implementation from object X

• Classify “strength” using consensus numbers: 

max # of procs for solving wait-free consensus
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Objects Consensus number

Read/write atomic registers 1

Queue, stack, Test-and-Set, … 2

Compare-and-Swap, queue with peek, … ∞


