

# Lecture 20: Secret Sharing

#### CS 539 / ECE 526

Sourav Das

# Secret Sharing

- Activity in groups of 3
- (2, 1) secret sharing for a bit:
  - A dealer shares a secret bit b
  - Each party gets a share (2 parties in total)
  - 1. Parties jointly can recover b
  - 2. Share of a single party reveal no information about b
- Hint: One party (party 1) will get a random bit b<sub>1</sub>

#### Secret Sharing: Protocol

- (2, 1) secret sharing for a bit:
  - A dealer shares a secret bit b
  - Each party gets a share (2 parties in total)



#### Secret Sharing : Reconstruction

- (2, 1) secret sharing for a bit:
  - 1. Parties jointly can recover b
  - 2. Share of a single party reveal no information about b



#### Secret Sharing : Security

- (2, 1) secret sharing for a bit:
  - 1. Parties jointly can recover b
  - 2. Share of a single party reveal no information about b



# Secret Sharing

- (n, t) secret sharing:
  - A dealer shares a secret s
  - Each party gets a share (n parties in total)
  - Any t shares reconstruct s
  - Any t-1 shares reveal no information about s
- Tolerate t-1 curious parties and n-t crash faults
  Hint 1: Use polynomials of degree t-1
  Hint 2: Any t-1 evaluation points does not reveal
  the entire polynomial

# Shamir's Secret Sharing [Shamir 1979]

•  $y = f(x) = s + c_1 x + c_2 x^2 + c_2 x^2 + ... + c_{t-1} x^{t-1}$ 

-s = f(0) is the secret. Other coefficients are random

• Party i's share is  $s_i = f(a_i)$ 

 $-a_1, a_2, a_3, ..., a_n$  are distinct public values

 t points fix a degree t-1 polynomial; can reconstruct using Lagrange interpolation

#### Lagrange Interpolation Formula

Let  $(x_1, y_1), \dots, (x_n, y_n)$  be *n* points with different *x* coordinates, then

$$P(x) = \sum_{i=1}^{n} \left( y_i \prod_{j \neq i} \frac{\left(x - x_j\right)}{\left(x_i - x_j\right)} \right)$$

is the only polynomial of degree  $\leq n-1$  that goes through all of them

$$X = \{x_1, x_2, \dots, x_n\}$$
$$L_{i,X}(x) = \prod_{j \neq i} \frac{(x - x_j)}{(x_i - x_j)}$$

- 1. Degree of  $L_{i,X}(x)$ ?
- 2. Value of  $L_{i,X}(x_i)$
- 3. Value of  $L_{i,X}(x_j)$  for  $j \neq i$

# Shamir's Secret Sharing [Shamir 1979]

- $y = f(x) = s + c_1 x + c_2 x^2 + c_2 x^2 + ... + c_{t-1} x^{t-1}$
- Will work with polynomials in a finite field
  - All numbers, and + and \* operations are mod p
    where p is a pre-chosen prime
  - Secret s  $\in \mathbf{Z}_p = \{0, 1, 2, ..., p-1\}$

# **Error Correction Codes**

- Encode a message m of k symbols into n > k symbols
- Can decode m despite some missing symbols (erasure) or corrupt symbols (error correction)

- Contrast with secret sharing?
- Some simple codes?

#### Reed-Solomon Code

- n = k + d, i.e., d redundancy
- Can tolerate d erasures or d/2 errors
- Encode:
  - Chunk msg m as  $[m_1, m_2, ..., m_k]$  s.t.  $m_i \in \mathbf{Z}_p$
  - Find a degree k-1 polynomial f(x) s.t.  $f(a_i) = m_i \forall i \le k$
  - Compute  $f(a_i)$  for  $\forall k+1 \le i \le n$
  - Encoded msg = [  $f(a_1), f(a_2), ..., f(a_n)$  ]

## Reed-Solomon Code

- Decode with erasure: Lagrange interpolation!
- Decode with error correction
  - Given  $b_1$ ,  $b_2$ , ...,  $b_n$  where  $bi = f(a_i)$  except d/2 points
  - Let e(x) be an "error locating polynomial", i.e.,  $e(a_i) = 0$  iff  $b_i \neq f(a_i)$ 
    - e(x) has  $\leq d/2$  distinct roots, hence degree  $\leq d/2$
    - We have  $e(a_i) f(a_i) = e(a_i) b_i$
  - Can solve the above system equations!

#### Reed-Solomon Code

- e(x) has  $\leq d/2$  distinct roots, hence degree  $\leq d/2$
- Solve system equations  $e(a_i) f(a_i) = e(a_i) b_i$
- How many unknowns?
  - All coefficients of e() and f(), so d/2 + k
- How many equations?
  - n equations but d/2 of them are same (0 = 0)
  - At least n d/2 = k + d d/2 = k + d/2