Lecture 20: Secret Sharing

CS 539 / ECE 526

Sourav Das

Secret Sharing

- Activity in groups of 3
- $(2,1)$ secret sharing for a bit:
- A dealer shares a secret bit b
- Each party gets a share (2 parties in total)

1. Parties jointly can recover b
2. Share of a single party reveal no information about b

- Hint: One party (party 1) will get a random bit b_{1}

Secret Sharing: Protocol

- $(2,1)$ secret sharing for a bit:
- A dealer shares a secret bit b
- Each party gets a share (2 parties in total)

Secret Sharing : Reconstruction

- $(2,1)$ secret sharing for a bit:

1. Parties jointly can recover b
2. Share of a single party reveal no information about b

Secret Sharing: Security

- $(2,1)$ secret sharing for a bit:

1. Parties jointly can recover b
2. Share of a single party reveal no information about b

Secret Sharing

- (n, t) secret sharing:
- A dealer shares a secret s
- Each party gets a share (n parties in total)
- Any t shares reconstruct s
- Any t-1 shares reveal no information about s
- Tolerate t-1 curious parties and n-t crash faults

Hint 1: Use polynomials of degree t-1 Hint 2: Any t-1 evaluation points does not reveal the entire polynomial

Shamir's Secret Sharing [Shamir 1979]

- $y=f(x)=s+c_{1} x+c_{2} x^{2}+c_{2} x^{2}+\ldots+c_{t-1} x^{t-1}$
$-s=f(0)$ is the secret. Other coefficients are random
- Party i's share is $s_{i}=f\left(a_{i}\right)$
$-a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are distinct public values
- t points fix a degree t-1 polynomial; can reconstruct using Lagrange interpolation

Lagrange Interpolation Formula

Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be n points with different x coordinates, then

$$
P(x)=\sum_{i=1}^{n}\left(y_{i} \prod_{j \neq i} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}\right)
$$

is the only polynomial of degree $\leq n-1$ that goes through all of them

$$
\begin{array}{cl}
X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} & \text { 1. Degree of } L_{i, X}(x) ? \\
L_{i, X}(x)=\prod_{j \neq i} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)} & \text { 2. Value of } L_{i, X}\left(x_{i}\right) \\
\text { 3. Value of } L_{i, X}\left(x_{j}\right) \text { for } j \neq i
\end{array}
$$

Shamir's Secret Sharing [Shamir 1979]

- $y=f(x)=s+c_{1} x+c_{2} x^{2}+c_{2} x^{2}+\ldots+c_{t-1} x^{t-1}$
- Will work with polynomials in a finite field
- All numbers, and + and * operations are mod p where p is a pre-chosen prime
- Secret $s \in Z_{p}=\{0,1,2, \ldots, p-1\}$

Error Correction Codes

- Encode a message m of k symbols into $n>k$ symbols
- Can decode m despite some missing symbols (erasure) or corrupt symbols (error correction)
- Contrast with secret sharing?
- Some simple codes?

Reed-Solomon Code

- $\mathrm{n}=\mathrm{k}+\mathrm{d}$, i.e., d redundancy
- Can tolerate d erasures or d/2 errors
- Encode:
- Chunk msg m as $\left[m_{1}, m_{2}, \ldots, m_{k}\right]$ s.t. $m_{i} \in Z_{p}$
- Find a degree $k-1$ polynomial $f(x)$ s.t. $f\left(a_{i}\right)=m_{i} \forall i \leq k$
- Compute $\mathrm{f}\left(\mathrm{a}_{\mathrm{i}}\right)$ for $\forall \mathrm{k}+1 \leq \mathrm{i} \leq \mathrm{n}$
- Encoded msg = [f($\left.\left.\mathrm{a}_{1}\right), f\left(\mathrm{a}_{2}\right), \ldots, f\left(\mathrm{a}_{\mathrm{n}}\right)\right]$

Reed-Solomon Code

- Decode with erasure: Lagrange interpolation!
- Decode with error correction
- Given $b_{1}, b_{2}, \ldots, b_{n}$ where $b i=f\left(a_{i}\right)$ except $d / 2$ points
- Let e(x) be an "error locating polynomial", i.e.,

$$
e\left(a_{i}\right)=0 \text { iff } \quad b_{i} \neq f\left(a_{i}\right)
$$

- $e(x)$ has $\leq d / 2$ distinct roots, hence degree $\leq d / 2$
- We have $e\left(a_{i}\right) f\left(a_{i}\right)=e\left(a_{i}\right) b_{i}$
- Can solve the above system equations!

Reed-Solomon Code

- $e(x)$ has $\leq d / 2$ distinct roots, hence degree $\leq d / 2$
- Solve system equations $e\left(a_{i}\right) f\left(a_{i}\right)=e\left(a_{i}\right) b_{i}$
- How many unknowns?
- All coefficients of e() and f(), so d/2 +k
- How many equations?
- n equations but $\mathrm{d} / 2$ of them are same $(0=0)$
- At least $\mathrm{n}-\mathrm{d} / 2=\mathrm{k}+\mathrm{d}-\mathrm{d} / 2=\mathrm{k}+\mathrm{d} / 2$

