
Lecture 20: Secret Sharing

CS 539 / ECE 526

Sourav Das

Secret Sharing

• Activity in groups of 3

• (2, 1) secret sharing for a bit:

– A dealer shares a secret bit b

– Each party gets a share (2 parties in total)

1. Parties jointly can recover b

2. Share of a single party reveal no information about b

• Hint: One party (party 1) will get a random bit b1

2

Secret Sharing: Protocol

• (2, 1) secret sharing for a bit:

– A dealer shares a secret bit b

– Each party gets a share (2 parties in total)

3

Dealer

Bob

Aliceb

r ←$ {0,1}

b1=b⊕r

b2= r

Secret Sharing : Reconstruction

• (2, 1) secret sharing for a bit:

1. Parties jointly can recover b

2. Share of a single party reveal no information about b

4

b1⊕b2 = b
Dealer

Bob

Aliceb

r ←$ {0,1}

b1=b⊕r

b2= r

Secret Sharing : Security

• (2, 1) secret sharing for a bit:

1. Parties jointly can recover b

2. Share of a single party reveal no information about b

5

Pr[b2=0]=Pr[r=0] = ½

Pr[b1=0]=Pr[r=b] = ½

Dealer

Bob

Aliceb

r ←$ {0,1}

b1=b⊕r

b2= r

Secret Sharing
• (n, t) secret sharing:

– A dealer shares a secret s

– Each party gets a share (n parties in total)

– Any t shares reconstruct s

– Any t-1 shares reveal no information about s

• Tolerate t-1 curious parties and n-t crash faults

7

Hint 1: Use polynomials of degree t-1
Hint 2: Any t-1 evaluation points does not reveal
the entire polynomial

Shamir’s Secret Sharing [Shamir 1979]

• y = f(x) = s + c1x + c2x2 + c2x2 + … + ct-1xt-1

– s = f(0) is the secret. Other coefficients are random

• Party i’s share is si = f(ai)

– a1, a2, a3, …, an are distinct public values

• t points fix a degree t-1 polynomial; can

reconstruct using Lagrange interpolation

8

10

𝐿",$ 𝑥 =+
%&"

(𝑥 − 𝑥%)
(𝑥" − 𝑥%)

𝑋 = {𝑥', 𝑥(, … , 𝑥)} 1. Degree of 𝐿",$ 𝑥 ?

2. Value of 𝐿",$ 𝑥"

3. Value of 𝐿",$ 𝑥% for 𝑗 ≠ 𝑖

Shamir’s Secret Sharing [Shamir 1979]

• y = f(x) = s + c1x + c2x2 + c2x2 + … + ct-1xt-1

• Will work with polynomials in a finite field

– All numbers, and + and * operations are mod p

where p is a pre-chosen prime

– Secret s ∈ Zp = {0, 1, 2, …, p-1}

11

Error Correction Codes

• Encode a message m of k symbols into n > k

symbols

• Can decode m despite some missing symbols

(erasure) or corrupt symbols (error correction)

• Contrast with secret sharing?

• Some simple codes?

12

Reed-Solomon Code

• n = k + d, i.e., d redundancy

• Can tolerate d erasures or d/2 errors

• Encode:

– Chunk msg m as [m1, m2, …, mk] s.t. mi ∈ Zp

– Find a degree k-1 polynomial f(x) s.t. f(ai) = mi ∀ i ≤ k

– Compute f(ai) for ∀ k+1 ≤ i ≤ n

– Encoded msg = [f(a1), f(a2), …, f(an)]

13

Reed-Solomon Code

• Decode with erasure: Lagrange interpolation!

• Decode with error correction

– Given b1, b2, …, bn where bi = f(ai) except d/2 points

– Let e(x) be an “error locating polynomial”, i.e.,

e(ai) = 0 iff bi ≠ f(ai)

• e(x) has ≤ d/2 distinct roots, hence degree ≤ d/2

• We have e(ai) f(ai) = e(ai) bi

– Can solve the above system equations!

14

Reed-Solomon Code
• e(x) has ≤ d/2 distinct roots, hence degree ≤ d/2

• Solve system equations e(ai) f(ai) = e(ai) bi

– How many unknowns?

• All coefficients of e() and f(), so d/2 + k

– How many equations?

• n equations but d/2 of them are same (0 = 0)

• At least n – d/2 = k + d – d/2 = k + d/2

15

