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How can we use cryptography to emulate the
existence of a trusted third party so that we can
run arbitrary programs on joint private inputs?
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Abstract. In thsncte, ve report on the first largescale and practical application of multipanty
somputation which took place bs January 208 Wo also report on twe wowel cryptograplic
protocols thet were wsed.

1 Introduction and History

In mukiparty computation (MPC), we consider a number of plavers P, ..., P., who initiallv each
hod inputs z, ...,z,, and we then want to sccurely compute some function f or these inputs, where
STy ooy Zn) = (M. -0y W), sSuch that F; learns y, but no other wformation. Thas should hold, even if
players exhibit some amowunt of acversarizl behavor. The gosl can be accomplished by an interastive
protoosl m that the players execute. Intutively, we want that execuiing = is equivalent to having a
trusted party 7" that receives privately z; rom P;, compuies the function, and returns y; to each P, *,
With such a protocol we can - in prinziple - solve virtually asy cryptogrophic protocol problem. The
gexeral theory of MPC was founded in the late 80-tes (16,3, 7). Tha theory was later developed in
several ways - see for instance 21, 18 8]. An overview of the theoretical results known can be found
in [6).

Nespite the abwinns patential thar MPC has in solving 5 wide range of prablems, we bave seen
virtually no practical applications of MPC in the past. This is probably in part due to the ‘act tha:
direct imp.ementation of the first general protoccls would lead to very ineffiziert solutions. Another
factor has been a genceral lack of usderstanding in the general public of the potential of the technology.
A lot of research has gone into sclving the efficiency problens, both for gerera’ protoeols [11, 17,9
and for special types of ccmpntations such as voting [4, 12].

A different line of ressudh hay Isad explicit focss on a range of economic applicstions, which
are partierlarly iweoresting for practical nee This aporoach was taken, for instanee, hy two research
projects that the aathors of ths paper have bern iavolved in: SCET (Secure Computing, Economy and
Trust)* and SIMAP (Secure Infornaton Managemert and Processing),*, which has been resporsible
for the practical application of MPC deecritod in tais paper. In the oconcmic fickd of mechanism
design the concept of a trusted third party has been a central assumption since the 70'% [15, 19, 10},
Ewver simce the fiele was initiated it has grown in momentum and furnad into a traly cross disciplinary
fickl. Today, sany practisal wrechsoims soquisre & Gusted Ciied poaty eand it is natuwasl (o comside
the possibility of implementing such 2 party ssing MPC, In particular, we have considered:

— Various tyaes of anctions that involwes sealed bids for diferent mascens. The mest wellknown is
probatly the stancard higaest bid auction with sealed bids, howerer, n tarms of turnover anothes
common variast is the so aalled double auction with many sellers and buyars. This auctior hasdles
scenarios where ore wants to find a fair market price for a commodily giver the existing supply
and danand in the market.

* This work was sponscred by the Danish Strategic Research Council

" This “equivaknod” can be formaliced using, for instance, Canetti’s Universal Compesability ramework[5.

7 yoo Mup: ! /sikkorhod doxsndes dk/uk )projects /ncet
¥ wee Mtp: /! /sikkerhed ddexendra.dk uk/projects/simap
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Abstract

We deseribe the definition, design, implementation, and deployment of a multi-party com-
putation protocal ard supporting web-based irfrastructure. Th2 protocol and infrastructure
constitnte a software applicetian that a'lows groape of coaperating parties, such as companies
or other viganzations, W collscl aggrega.e duta for statistical analyss withoat revealing the
data of ind vidual participants The application was developed specificelly 1o support a Boston
Women's Warkfarce Council (BWWC) study of the gender wage gap among employers within
the Greater Boston Area. The apphicaiion was deployad successfully to collzact aggregate statis-
tical dsts pertaining to compensation levels across genders and demographics at a aumber of
participazing organizations.

1 Introduction

Modern organizations, induding companies, educational nstitaticns, and goveraments agencies,
have been collecting and analyzing data pertaining to their internal operations for some time and
to great effect, such as in evaluating performance or improving efficiency. While tais data is of
great value te the orgnnizations themsclves, it is likdy that novel insights valuable to maltiple
organizations, to policymakers, or to society at large can be derived by combining data from thes?
multiple organizations and analyzing it &s a single coupus.

Unfortunately, the data eollecied by organizations internally is often proprietery ard confiden-
tial, and its release may be potentially deletericus to their interests. Furthermore, while organiza-
tiors may have the opiion cf rcleasing sensitive data selectively to spedific agents entrusted with
its analysis, this presents a security risk: how will the date be physically trensferred in a securs
way, how will it be boused during the analysis, and how will it be destroyed after an analysis is
complete?

Secure mult-party computation (MPC) techniques have been known for decades at least as
theoretical constructs 25|, and recent efforts [19, 13, 16, 21, 23] are finally bringing us cleser to
a point at which these technigues will be available to end-users (i.e., organizations interested in
collectively analyzing their sensitive datz).

In this report. we describe the definizion, design, implementation, and deployment of a multi-
pariy computation protocol and supperting web-based infrastructure ‘or analvzing compensation
data (broken down by gender and demographics) from a colection of employer organizations.
The serure mnli-party eompntation pratoenl utilized for this applieation is of relatively maodest
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Abstract. Wr drserihe the nse of seenre mnln-party oomputation for
preforming A lavgo-scale primaoy-preserving statistionl stady an real gooe-
evpoent Jata, Lo 2015, stalisticiue [roan the Eelowan Cenler of Ap-
plied Ressgeel {CoulAR) conducied & big dats eludy Lo ook fur correls-
L Letween working dusbng weiversily sludivs and Gailing Lo graduale
i tboe. The study was conducted by lindaoy Lhe datsbase of jodivid-
udl lax payoweuls uo e Esloviaso Tax and Custonss Bused aud L
dalabaee of logler educslivn eveuls oo the Mivisuy of Educstion sl
Reesarcl., Dt colleclion. preparalion sad smalyveis wers coodwcied wsioyg
Live SHAREMIND secure muwlti-parly computalion evslew Ll provided
antlelomend crvplographic prolection o Lhe analysee Using ten million
tax reeords and half a millian eduention records 0 the analysis, this 3s
the lnrgest eryptographically private statistionl stondy ever eomdoenad on
real dntn.

Keywords: privacy, statistics, secure multi-parcy computation, case study

1 TIntroduction

Trformation aml commmmivivion lechnology (TOTT 5 a growing mdustey when:
highlv slalled sprcialists are inodermonl. This caosrs conoern Lo Tioth indusbey,
where the winges lsepr vising, and e secademia Dl cannel olen maleh Uhe pay
grvdes offered by he industey. The aniversibies o Fstonia Tornesd a0 by pollesis
1l stndenls who work doring Ltheir stinlies. o noel geadose o Dhe alliued
Lienee, Moreover, many shdents guil belore grinduastion, 1hos, nol sxqoiring Lhe
skills neaxdixd Tor Tinilding, more complex TOT syslems.

To Wlos paper. we deserilie i big dadia sbudy on Extonian govermment disla
Pl nesearchies This lopic aml ases privacy - enhancing lechnologies o protesel,
personial dita, We collabornss! will o wson of sod scienlisls who desigresd o
sbadistical stndy s Tinks Lacaond edocation reeorlds Loodetermine The working
habits of both 1CT and non-1CT students. However, running the actual study
would normally be impeoesible, as data protection and tax secrecy legislation
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Abstract

In this work, we consider the Intersection-Sum problem: two parties hold datasets contain-
ing user identifiers, and the second party additionally has an integer value associated with cach
user identifier. The parties want to learn the number of users they have in common, and the sum
of the associated integer values, but “nothing more”. We present a novel protocol tackling this
problem using Diffie-Hellman style Private Set Intersection techniques together with Paillier
homomorphic encryption. We prove security of our protocol in the honest-but-curious model.
We also discuss applications for the protocol for attributing aggregate ad conversions, Finally,
we present a vanant of the protocol, which allows aborting if the intersection is too small, in
which case neither party leams the intersection-sum.

1 Introduction

Protocols for private set intersection (PSI) allow two or more parties to compute an intersection
over their privately held input sets, without revealing anything more to the other party beyond the
elements in the intersection. Related protocols allow parties to learn only restricted functions of
the intersection, such as the cardinality of the intersection, or whether the size of the intersection
exceeds some threshold. Various approaches have been presented in previous work, in both the

honest-but-curious and malicious security models.

*Work done while at Google Inc.
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Abstraci— Corplex machine learning (ML) inference algo-
rithms like recarrent neurzl networks (ENNs) use standard
functions frem rath livrares like exponentintion, sigmoid, tanh,
and reciproeal of square rcot. Although prior werk en sccure 2-
party infarance provides specialized protocels for convolutional
neural networks (CNNs), existing secure implemenmations of
these math operaters rely on generic 2-party computaton (2PC)
protozols that suffer from high commarication. W2 provide rew
specinlized 2PC protocol: for math functiors that erucially rely
on lookup-tables and mixed-bitwidths to address this perfor-
mance everhead; vur protecels fur math funcivas conmunicle
up 10 423 % less data than prior work, Some of the mixed bitwidth
operaticns used by our math implementations are (zero and
signed) extensons, different forms of truncatiens, multiplication
of operands of mixed bitwidths and digit decomposition (a
gencrnlization of bit devomposition to larger digits). Fer cach
ol these primitive operations, we consiruct specialized 2°C
prolocols that are more communication efficient than generic
2PC, and ran he of independent interest. Furthermorm, nur math
implementations are numerically precise, which smsures that the
secure implanentations preserve mwodel accuracy of cleartext, We
build on op of our novel protocols 10 balld SIRNN, a lbrary
for end-to-end secure Z-party DNN inference, tha! provides the
first secure implementations of an RNN operating on time series
sencor data, an ENN operatieg on speech data, and a state-
of-the-art ML architecture that combices CNNs and RNNs for
Mestilying all heacs present in images, Our evaluaton shows that
SIENN achieves up to three arders of magnitude of performance
improvement when compared ta nference of these models usng
an existing state-of-the-art 2PC framework.

Index Terms—privacy-prescrving machine learning; sccare
two-pany compatation; recurrent seural networks; math func-
tions; mixec-hitwidths: secure inference

[, INIROLUCTION

In the problem of secure inference, there ére two parties:
a server that hold: a peoprietary machin: leaming (ML)
model and a client that holds a privawe input. The goal is
for the clieat to learn the prediztion that the model provides
on the input, with the scrver lcaming nothing about the
client’s input and the cliznt Jearring nothing about the server’s
model beyonc what can be deduced from the prediction itsalf.
Theoretically, this probiem can be salved by generic secare
2-party computaton (2PC) [49), [115) Recently, this area
hiss made great strides wilh the works of (5], [10], [17)}-[20],

* Egual coatringion.

(25]), 127), [32), [35], [37). [39), [47), [28], [64], |69], [73),
(R3], [9C)=[92]), [99)-[1(2], [110] that hzve made it possible
W run seowe infacnce on deep newsal neiworks (DNNs).
“rameworks for secure iaference like aGreph-HE [18], [16].
MPIML [17), CrypTFlow [73), [99), and SccurcQ8 [37]
20 one step turther and can automatically camprie models
trained in TensocHow/PyTorchlONNX to 2-party or 3.parly
computaion prowcols secure against semi-hoaest adversaries.

While such systems cover the secure inference of
some famous Convcluional Neural Networks (CNNs) (e.z.
ResNet (55]. DenseNet [61) and MobileNet [105]) that ex-
clusively use simple non-lincar furctions such as RellU and
Maxpool, other important architectures such as Racurrent
Ncural Networks (RNNs) or architecturss that combine RNNs
and CNNs [104] use mah functiors, such as expoaeatiation,
reciprocal scuare root, sgmoid and tash, axteasively. These
RNN-based arch tectures we the models of chuice when Jdeal-
ing with sequential or time szries cata like speech [34), [39).
(112]). Hence, for widespread adoptioa of sscure inference,
especially in the RNN application domrains, a sobust suppert
‘or math functions is of paramount importance,

We focus on 2-party mference secure against semi-honest
adversaries’. In thiz cetting, works that implement math fune
tions fall imo three calegories. First, works tiat develop
general purpose mach libranies (9], [66] osing high-degree
pAyncusals, Seeond, works Uit use booleu circuits ®© -
plemeat math functions [102]. Third. werks that use ad hoc
piccewiss lincar appraximations [83] that require developer
ntervention for cach dataset and cach medezl to balance
accuracy end latency, an unaceedtable ask s the context of
aulomarted frameworks far secure inference. All of these three
approackes rely on ZPC protocols from [41], [66], [115]) and
suller fom buge pedfonmnarc: vvercads,

In thic werk, we design math functionahties that are both
provably precise and cfficiently realizable via novel 2PC
protocols that we have developed. The periormance of &ll
2PC implementaions depend cntically on the binvideh, While
prior works use a uniform bitwidth for the whole inference,
our math functionaities use non-uniferm (or mixed) bitwidths:

We relgite comparisons with works hat seed acditiosal parties for
ocunty, 0.g., 3 paty cemputator, (JPC) to Section VIL
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ABSTRACT

Federated Learning enadles a population of cllents, working with a
trasted server to colaboratively learn a shased michone learning
model while keeping each client’s data within its own leca’ systems.
This reduces the risk of exposing sensitive data, but it is stil pos-
sible to reverse engineer izformation zboat o clent's private data
sct ftomcomumusva od mdel paacscters, Most [ederated leanig
systems therefore use differential privacy ‘o introduce nose to the
perameters This adds uncertainty to any attempt to reveal private
clew: Jdeta, bul also iedaces the acvcuracy of U shared meodel, lin-
iting the useful scale of privacy-preserving noise A system can
further redace the coordinating scrver’s abilty to ~ccover private
clent information, without additonal accuracy loss, by also inclad
ing sroure mudtiparty compufation. An approach combiring both
techniques is especiclly relevant to financial firme 25 it allows new
possbilities for collsborative leaming withoat exposing eensitive
cbent data. This could preduse more accurate models for impor-
tant tasks like optimal trade execution, credit orgination, or fraud
detection. The key contributions of this paper are: We present a
privacy-preserving federated learning protocol 1o @ non-spesialist
andience, demaoncteste it ising logistic regrezcion an a real-warld
credit card frand data set, and evaluate it ising an open-surce
simmlation plstform which we have acapred for the development
of federated leaming systems
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1 INTRODUCTION

Mcdem financial frms routinely aeed to conduct analysis of large
data sels stored wcross mutiple servers or devices. A typical ne-
sponse is to combine these Jara sets into a single ceatral database,
but this approach Introduces a number of privacy challenges: The
inditution may not have appropriate sutborily or peomission o
tansles locally stured indurmacion, the owner of the data usay not
want it sharzd, and centralization of the data may worsen the po-
tential consequences of a data breach.

“or example, the nwbie app aisty pr colleded persvia data from
its asers’ ohones and vploaded thisinformationto a central catabase.
Sccurity rescarchers gained ncacas to the databasc and obtancd the
names, email addresscs, pasewerds, and ether sensitive iaformaticon
of 31 nillion users of the Androad version of the app. Such incidents
highlight the ricks and challenges associated with centralized data
solatiens. 5]

n this sestion, we motivate our approach while providing an
extensive nen-technical overview of the underlying techniques.

1.1 Federated Learning

One approach 1o mitigate the mentioned privacy concems is 10
amalyze the multiple data set: sepacately and share anly the re-
sulting irsights from each analys's. This approach §5 realized ina
recently-introduced technijue called federated analysis, [2] Fed-
erated learning, already adopted by large compantes like Google,
allows users Lo shure insghils (verhaps the pamanwters of o trzined
wwdel) o the cate on thieir laptops or mobile devives withowt
ever saaning the dataitsclf, typically as fol.ows:

1. Userstrain a local model on their individual data,

2. Each user s»ncs their model weights to a trustec server.

3. The server computes an average-waght shared molel

4. The shared mcdel is returned to all of the users,

5. Usersretrain a local model sterting from the sharec model.

“or instance. email providers could use federated Jeaming 1o
reduce the amount of spam their customers receive. Insteed of
each provider using its own spam filter trained from its customers’
reported spam email, the providers could combine their models to
create a shared spam-detection mechanism, without sharing their
individual custcmers' reported spam emails. For a survey of recent
advances in federztec learning see Kairouz etal. [13]

't is stll possible, however, for a malicious party to potentially
compromise the privacy of the individuzl users by inferring details
of a training data set from the trained model's weights or parame-
ters [16, 19]. It is importan! to protect sensitive user information
while still providing highly accurate inferences.

B -
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ABSTRACT

Federated Learning enadles a population of cllents, working with a
trasted server to colaboratively learn a shased michone learning
model while keeping each client’s data within its own leca’ systems.
This reduces the risk of exposing sensitive data, but it 15 stil pos-
sible to reverse engineer insformation zboat & clent’s private data
scd [t comumuwsca od mudel panaccters, Most [ederated leanmg
systems therefore use differential privacy ‘o introduce nose to the
perameters This adds uncertainty to any attempt to reveal private
clew: Jdeta, bul also iedaces the acvcuracy of U shared meodel, lin-
iting the useful scale of privacy-preserving noise A system can
further redace the coordinating scrver’s abilty to ~ccover private
clent information, without additonal accuracy loss, by also inclad
ing sroure mudtiparty compufation. An approach combiring both
techniques is especiclly relevant to financial firme 2& it allows new
possbilities for collsborative leaming withoat exposing eensitive
cbent data. This could preduse more accurate models for impor-
tant tasks like optimal trade execution, credit orgination, or fraud
detection. The key contributions of this paper are: We present a
privacy-preserving federated learning protocol 1o @ non-spesialist
andience, demaoncteste it ising logistic regrezcion an a real-warld
credit card frand data set, and evaluate it ising an open-source
simulation plstform which we have acapred for the development

of federated leaming systems
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1 INTRODUCTION

Mcdem financial frms routinely aeed to conduct analysis of large
data sels stored wcross mutiple servers or devices. A typical ne-
sponse is to combine these Jara sets into a single ceatral database,
but this approach Introduces a number of privacy challenges: The
inditution may not have appropriate sutborily or peomission o
tansles locally stured indurmacion, the owner of the data usay not
want it sharzd, and centralization of the data may worsen the po-
tential consequences of a data breach.

“or example, the nwbie app aisty pr colleded persvia data from
its asers’ ohones and vploaded thisinformationto a central catabase.
Sccurity rescarchers gained ncacas to the databasc and obtancd the
names, email addresscs, pasewerds, and ether sensitive iaformaticon
of 31 nillion users of the Androad version of the app. Such incidents
highlight the ricks and challenges associated with centralized data
solatiens. [5]

n this sestion, we motivate our approach while providing an
extensive nen-technical overview of the underlying techniques.

1.1 Federated Learning

One approach 1o mitigate the mentioned privacy concems is 10
analyze the multiple data set: sepacately and share oanly the re-
sulting irsights from each analys's. This approach §5 realized ina
recently-introduced technijue called federated analysis, [2] Fed-
erated learning, already adopted by large compantes like Google,
allows users Lo shure insghils (verhaps the pamanwters of o trzined
wwdel) o the cate on thieir laptops or mobile devives withowt
ever saanng the dataitsclf, typically as fol.ows:

1. Userstrain a local model on their individual data,

2. Each user s:ncs their model weights to a trustec server.

3. The server comprtes an average-waght shared model

4. The shared mcdel is returned to all of the users,

5. Usersretrain a local model sterting from the sharec model.

“or instance. email providers could use federated Jeaming 1o
reduce the amount of spam their customers receive. Insteed of
each provider using its own spam filter trained from its customers’
reported spam email, the providers could combine their models to
create a shared spam-detection mechanism, without sharing their
individual custcmers' reported spam emails. For a survey of recent
advances in federztec learning see Kairouz etal. [13]

t is stl possible, however, for a malicious party to potentially
compromise the privacy of the individuzl users by inferring details
of a trining data set from the trained model's weights or parame-
ters [16, 19]. It is importan! to protect sensitive user information
while still providing highly accurate inferences.

e ey

B —

Secure Auctions

Privacy-preserving studies
Privacy-preserving advertising

Privacy-preserving analytics
(Secure Machine Learning)

Financial Fraud Detection

...and much more
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HOW TO PLAY ANY MENTAL GAME

A Completeness Theorem for Protocols with Honest Majority

(Extended Abstract)
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Abstract

We present a polynomial-time algorithm thac,
given as a input the description of a game with
incomplete information and any number of players,
produces a protocol for playving the game that leaks
no partial information, provided the majprity of the
players is honest.

Qur algorithm automatically solves all the
multi-party protocoi problems addressed in
complexity-based cryptography duting the last 10
years. It acwally is a completencse thearem for the
class of distributed prowcols with honest majority.
Such completeness theorem is optamal in the sense
that, if the maprity of the players is not honest,
some protocol problems have no efficient solution(€],

1. Introduction

Before discussing haw to "make playahle® a
general game with incomplete infermadon (which
we do in section 8) let us address the problem of
making playable a special class of games, the Tunng
machine games { Tm-gomee for short).

Informally, n parues, respectively and indivis
dually owaing secret lnputs zy,...,%,, would like to

Work partiaily aupported by NSF grants DCR-3600905 acd
DCR-8413577, an [(BM post-decioral feilawship and an
IBM faculty development award, The work was done when
the frst author was ot the Laboratory for Computar Sci-
snee at MIT, and the second author at the machemalicyl
Sciences Researeh [nsuitute st UC-Bercealey,

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of

the publication and its date appear, and nolice is given that copying

% by permission of the Association for Computing Machinery. To

copy oltherwise, or 0 republish, requires a fee and/or specfic
permission

@ 1987 ACM 0-89791-221.7/B7/0006-0218 75¢

correctfy run a given Turing machine M on these
r;’s while keeping the maximum possible privacy
about them. That 18, they want to compute
y=M(z,,..,2,) without revealing more about the
x;'s than it is already contained in the value y itself.
For instance, if M computes the sum of the z,’s,
every single player should noc be able to learn more
than the sum of the inputs of the other parties,
Here M may very well be a probsbilistic Turing
machine. In this case, all players want w agree on a
single string y, selectad with the right probability
distmbution, as M’s output.

The correctness and privacy constraint of a
Tm-game csn be sasily met with the help of an
extra, trusted party P. Each player i simply gives
his secret input z; to P. P will privately run the
prescridbed Turing machine, A/, on thest inputs and
publically announce M’s output. Making 2 Tm-
game playable essentially means that the correctness
and privacy constrainte can be satisfied by the =
players themselves, without invoking any extra
party. Proving that Tm-games are playable retains
moat of the flavor and difficulties of our general
theorsem.

2. Preliminary Definitions

2.1 Notation and Conventions for Proba-
bilistic Algorithms.

We emphasize the number of inputs received
by an algorithm as follows. If algorithm A receives
only one input we write "A(')", if it receives two
inputs we write A(-,’) and so on.

RV will atand for "random variable”; in this
paper we only consider RVs that assume values in
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How to run any program...

For parties that are honest but
curious (semi-honest)
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OT is a standard cryptographic
primitive, and there are many
protocols that mplement it
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A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

Output




Fact: { A, @D ,1} is a complete Boolean basis.

For any Boolean function f : {0,1}" — {0,1}", there exists a
Boolean circuit over { A, @ ,1} that computes {.

|.e., Boolean circuits can compute any bounded function
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Step 1 of GMW:
Express program F' as a Boolean circuit C
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XOR Secret Shares

¢

The XOR secret sharing of a bit x is a pair of
bits (x,y, x;) where P, holds xy and P, holds

X1, and where x, @ x; = x
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XOR Secret Shares ﬂ
-

P Q

The XOR secret sharing of a bit x is a pair of
bits (x,y, x;) where P, holds xy and P, holds

X1, and where x, @ x; = x

We sometimes denote such a pair by | x]
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XOR Secret Shares

The XOR secret sharing of a bit x is a pair of
bits (x,y, x;) where P, holds xy and P, holds

X1, and where x, @ x; = x

We sometimes denote such a pair by | x]

Intuition: P’s share x;, acts as a mask, hiding
x from P, (and vice versa)
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la]
1]

[c]
[d]

[(a ® c)(b D d)]
®



-

£

[
a,b c,d

0~ =0

Each party in its head maintains a local copy
of the circuit, placing its shares on the wires

>

Q
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a,b

la]
1]

[c]
[d]

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?

How do we “decrypt” output shares? C, d
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Where do input shares come from?

Goal: put [x] on the input wire

¢
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Goal: put [x] on the input wire

¢

r < {0,1)
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Goal: put [x] on the input wire

¢

r < {0,1)
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Where do input shares come from?

Goal: put [x] on the input wire




How do we XOR two shares?
Goal: given gate input wires holding [x], [y], 4

put [x @ y] on the gate output ’ Q

X adl
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How do we XOR two shares?
Goal: given gate input wires holding [x], [y], 4

put [x @ y] on the gate output ’ Q

X adl
Xo D Yo X DY
Yo Y1
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How do we XOR two shares?
Goal: given gate input wires holding [x], [y], 4

put [x @ y] on the gate output ’ Q

X adl
Xo D Y X, Dy
20 XOR is “free” 2l
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How do we “decrypt” output shares?

Goal: given wire holding [x],
reveal x to each party

¢
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How do we “decrypt” output shares”? ﬂ
Goal: given wire holding [x], 4

P Q

reveal x to each party
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la]
1]

[c]
[d]

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?

p

How do we “decrypt” output shares”?
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How do we AND two shares?
Goal: given gate input wires holding [x], [y], 4

put [x A y] on the gate output ’ .
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How do we AND two shares?
Goal: given gate input wires holding [x], [y], 4

put [x A y] on the gate output ’ Q

(Xo © x1) A (Vo D yy1)
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How do we AND two shares?
Goal: given gate input wires holding [x], [y], 4

put [x A y] on the gate output ’ Q

(Xo @ x1) A (Vo D yy1)
= (Xg A Vo) D (Xg Ay D (x; Ayy) D (x; Ayy)
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How do we AND two shares? @
Goal: given gate input wires holding [x], [y], 4

|

X

put [x A y] on the gate output

(Xo @ x1) A (Vo D yy1)
= (Xg A Vo) D (Xg Ay D (x; Ayy) D (x; Ayy)

X \ “Free” ) X,
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How do we AND two shares? M
Goal: given gate input wires holding [x], | v], ,_

e

put [x A y] on the gate output

(Xo @ x1) A (Vo D yy1)
= (Xg A Yo) © (g Ayy) © (x; AYyp) © (X Ayy)

NP
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random secret share |x A V| s.t. neither party
learns X A y

Important Subgoal
Goal: given gate input bits x, y, compute ‘
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random secret share |x A V| s.t. neither party
learns X A y

X

Important Subgoal
Goal: given gate input bits x, y, compute ‘

r < {0,1)
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Important Subgoal @

Goal: given gate input bits x, y, compute ’ .
random secret share |x A V| s.t. neither party

learns X A y y

Y

—
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Important Subgoal @

Goal: given gate input bits x, y, compute ’ .
random secret share |x A V| s.t. neither party

learns X A y y

]N_{O’I}I”FEBX y

Y O
s

rd (xAy)
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Important Subgoal

Goal: given gate input bits x, y, compute
random secret share |x A V| s.t. neither party
learns X A y

]N_{O’I}I”FEBX y

—

-~

|
Y




How do we AND two shares?

Goal: given gate input wires holding [ x], | v],
put [x A y] on the gate output

70
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How do we AND two shares? @
Goal: given gate input wires holding [x], | v],

put [x A y] on the gate output ’ .
s & 0.1
ﬁ r P (xO A yl)

(rd (s D x; Ayy) D (g Ay, s @ (rd xy Ay @ (x; Ayy))
=[x Ayl

/1



la]
1]

[c]
[d]

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?

p

How do we “decrypt” output shares”?

(2

[(a ® c)(b D d)]
®
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GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:
O(|C|)OTs

Number of protocol rounds scales with the depth of C
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Now we know how
{0 run any program

What is the MPC field about?

More Parties
Stronger Security Notions

Improved Efficiency



