
David Heath

A Quick Tour of Secure
Multiparty Computation (MPC)

1

2

x y

z

 // F.c

 int main (int argc,
 char** argv) {

 …
 }

3

x y

z

Trusted
Third Party

 // F.c

 int main (int argc,
 char** argv) {

 …
 }

4

x y

z

 // F.c

 int main (int argc,
 char** argv) {

 …
 }

Trusted
Third Party

5

x y

z

Trusted
Third Party F(x, y, z)

6

x y

z

Trusted
Third Party F(x, y, z)

Confidentiality
Integrity

7

“Learn nothing
but the output”

x y

z

Trusted
Third Party F(x, y, z)

8

9

x y

z

x y

z

F(x, y, z)

F(x, y, z)
F(x, y, z)

10

Confidentiality
Integrity

 Secure Multiparty Computation

How can we use cryptography to emulate the
existence of a trusted third party so that we can
run arbitrary programs on joint private inputs?

11

12

Secure Auctions

13

Secure Auctions

Privacy-preserving studies

14

Secure Auctions

Privacy-preserving studies

15

Secure Auctions

Privacy-preserving advertising

Privacy-preserving studies

16

Secure Auctions

Privacy-preserving advertising

Privacy-preserving studies

Privacy-preserving analytics

 (Secure Machine Learning)

17

Secure Auctions

Privacy-preserving advertising

Privacy-preserving studies

Privacy-preserving analytics

 (Secure Machine Learning)
Financial Fraud Detection

18

Secure Auctions

Privacy-preserving advertising

Privacy-preserving studies

Privacy-preserving analytics

 (Secure Machine Learning)
Financial Fraud Detection
…and much more

19

How to run any program…

For parties that are honest but
curious (semi-honest)

Classic GMW Protocol

Sender Receiver

1-out-of-2

Oblivious
Transfer

20

Sender Receiver

1-out-of-2

Oblivious
Transfer

m0, m1

21

Sender Receiver

1-out-of-2

Oblivious
Transfer

m0, m1 b ∈ {0,1}

22

Sender Receiver

1-out-of-2

Oblivious
Transfer

m0, m1 b ∈ {0,1}

23

mb

Sender Receiver

1-out-of-2

Oblivious
Transfer

m0, m1 b ∈ {0,1}

mb⊥

24

Sender Receiver

1-out-of-2

Oblivious
Transfer

m0, m1 b ∈ {0,1}

mb⊥

25

OT is a standard cryptographic
primitive, and there are many
protocols that implement it

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate26

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

27

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

28

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

0

29

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

0

0

30

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

0

0

0

31

32

Fact: is a complete Boolean basis.{ ∧ , ⊕ ,1}

For any Boolean function , there exists a
Boolean circuit over that computes .

f : {0,1}n → {0,1}m

{ ∧ , ⊕ ,1} f

I.e., Boolean circuits can compute any bounded function

x y

x y

f(x, y) f(x, y)
Trusted

Third PartyIdeal World

Real World

GMW Protocol

33

x y

x y

f(x, y) f(x, y)
Trusted

Third PartyIdeal World

Real World

GMW Protocol
Hint: Use a lot of Oblivious Transfer

34

35

Step 1 of GMW:

Express program as a Boolean circuit F C

36

⊕

⊕
∧

a, b c, d

37

⊕

⊕
∧

a, b c, d

38

⊕

⊕
∧

a, b c, d

39

⊕

⊕
∧

̂a

b̂

̂c

̂d

a, b c, d

40

⊕

⊕
∧

̂a

b̂

̂c

̂d

̂a ⊕ c

a, b c, d

41

⊕

⊕
∧

̂a

b̂

̂c

̂d

̂a ⊕ c

̂b ⊕ d

a, b c, d

42

⊕

⊕
∧

̂a ⊕ c

̂b ⊕ d

̂(a ⊕ c)(b ⊕ d)

̂a

b̂

̂c

̂d

a, b c, d

43

XOR Secret Shares

The XOR secret sharing of a bit is a pair of
bits where holds and holds

, and where

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x

44

XOR Secret Shares

The XOR secret sharing of a bit is a pair of
bits where holds and holds

, and where

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x

We sometimes denote such a pair by [x]

45

XOR Secret Shares

The XOR secret sharing of a bit is a pair of
bits where holds and holds

, and where

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x

Intuition: ’s share acts as a mask, hiding
 from (and vice versa)

P0 x0
x P1

We sometimes denote such a pair by [x]

46

⊕

⊕
∧

̂a ⊕ c

̂b ⊕ d

̂(a ⊕ c)(b ⊕ d)

̂a

b̂

̂c

̂d

a, b c, d

47

⊕

⊕
∧

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

a, b c, d

48

Each party in its head maintains a local copy
of the circuit, placing its shares on the wires

a, b c, d

49

⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

a, b c, d

50

x

Where do input shares come from?
Goal: put on the input wire[x]

51

x

Where do input shares come from?

r $← {0,1}

Goal: put on the input wire[x]

52

x

Where do input shares come from?

r $← {0,1}

Goal: put on the input wire[x]

x ⊕ r

53

x

Where do input shares come from?

r $← {0,1}

Goal: put on the input wire[x]

x ⊕ r

x ⊕ rr

54

⊕
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ⊕ y]

How do we XOR two shares?

⊕
x1

y1

55

⊕
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ⊕ y]

How do we XOR two shares?

⊕
x1

y1
x0 ⊕ y0 x1 ⊕ y1

56

⊕
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ⊕ y]

How do we XOR two shares?

⊕
x1

y1
x0 ⊕ y0 x1 ⊕ y1

XOR is “free”

57

Goal: given wire holding ,
reveal to each party

[x]
x

How do we “decrypt” output shares?

x0 x1

58

Goal: given wire holding ,
reveal to each party

[x]
x

How do we “decrypt” output shares?

x0 x1

x0
x1

59

⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

60

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

61

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)

62

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

63

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

“Free”

64

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

OT

65

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

66

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

r $← {0,1}

67

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
r, r ⊕ x yr $← {0,1}

68

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
r, r ⊕ x yr $← {0,1}

r ⊕ (x ∧ y)

69

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
r, r ⊕ x yr $← {0,1}

r ⊕ (x ∧ y)⟨r, r ⊕ (x ∧ y)⟩ = [x ∧ y]

70

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

r $← {0,1} s $← {0,1}

OT
r, r ⊕ x0 y1

r ⊕ (x0 ∧ y1)

OT
y0

s ⊕ (x1 ∧ y0)

s, s ⊕ x1

71

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

r $← {0,1} s $← {0,1}

OT
r, r ⊕ x0 y1

r ⊕ (x0 ∧ y1)

OT
y0

s ⊕ (x1 ∧ y0)

s, s ⊕ x1

⟨r ⊕ (s ⊕ x1 ∧ y0) ⊕ (x0 ∧ y0), s ⊕ (r ⊕ x0 ∧ y1) ⊕ (x1 ∧ y1)⟩

= [x ∧ y]

72

⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

73

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:

 OTs

 Number of protocol rounds scales with the depth of
O(|C |)

C

74

What is the MPC field about?

More Parties

Stronger Security Notions

Improved Efficiency

Now we know how
to run any program

