A Quick Tour of Secure Multiparty Computation (MPC)

David Heath

$$
\therefore 0^{0}
$$

Trusted Third Party


```
// F.c
int main (int argc,
char** argv) \{
```


x

Trusted
 Third Party

Trusted
 Third Party

 $F(x, y, z)$

x

y

Trusted
 Third Party

 $F(x, y, z)$

x

y

Confidentiality Integrity

"Learn nothing but the output"

Trusted
 Third Party

$F(x, y, z)$

x
y

Confidentiality

 Integrity

Secure Multiparty Computation

How can we use cryptography to emulate the existence of a trusted third party so that we can run arbitrary programs on joint private inputs?

Secure Auctions

Secure Auctions

Web-based Multi-Party Computation with Application to Anonymous Aggregate Compensation Analytics
Andrei Lapets Erric Dunton Kyle Holzinger Feederick Jansen Azer Bestavyrea
CS Dept., Boston University
111 Cummington Mal
Boston, MA USA
\{12epeta, edunton, kiolz, fjansen, best\}@ba.edu

Privacy-preserving studies

Secure Auctions

Students and Taxes: a Privacy-Preserving Social Study Using Secure Computation

1 Introduction

habity of obth IITT and non-IITr students. Hoxever, numining the eactual stud

Privacy-preserving studies

Secure Auctions

Private Intersection-Sum Protocol with Applications to Attributing Aggregate Ad Conversions

Mihaela Ion †
, Ben Kreuter ${ }^{\dagger}$, Erhan Nergiz ${ }^{\dagger}$, Sarvar Patel ${ }^{\dagger}$, Shobhit Saxena ${ }^{\dagger}{ }^{\dagger}$, Karn Seth ${ }^{\dagger}$, David Shanahan ${ }^{\dagger}$ and Moti Yung ${ }^{\ddagger}$ ${ }^{\dagger}$ \{mion, benkreuter, anergiz, sarvar, shobhitsaxena, karn, dshanahan\}@google.com Google Inc.
Columbia University and Snap Inc.
July 31, 2017

In this work, we consider the Intersection-Sum problem: two parties hold datasest contain- ing user identifers, and the seocond pary add titionally has an integer value associated with each ser probem ussociated integer values, but "nothing more". We present a novel protocol tackling this we present a variant of the protocol, which allows abo which case neither party lears the intersection-sum.
 1 Introduction

Protocols for private set intersection (PSS) allow two or more parties to compute an intersection over their privately held input sets, without revealing anything more to the other party beyond the
elements in the intersection. Related protocols allow parties to learn only restricted functions of the intersection, such as the cardinality of the intersection, or whether the sizz of the intersection exceeds some threshold. Various approaches have been presented in previous work, in both the
ent honest-but-curious and malicious security models.

Privacy-preserving studies

Privacy-preserving advertising

Secure Auctions

SiRnN: A Math Library for Secure RNN Inference

Privacy-preserving studies

Privacy-preserving advertising

Privacy-preserving analytics (Secure Machine Learning)

Secure Auctions

Privacy-preserving studies

Privacy-preserving advertising
Privacy-preserving analytics (Secure Machine Learning)

Financial Fraud Detection

Secure Auctions

Privacy-preserving studies

Privacy-preserving advertising
Privacy-preserving analytics (Secure Machine Learning)

Financial Fraud Detection

...and much more
(Extended Abstract)
Oded Goldreich

Silvio Micafi

Avi Wigderson
Dept. of Computer Sc. Lab. for Computer Sc. Inst. of Math. and CS Technion Tectnion
Haifa, Isrsel
be tract
We present a polynomiall-time algorithm tha Viven as a input the description of a game wiw incomplete information and any number of players, ho partial information, provided the majority of the players is honest.

Our algorithm anomstiealy solves all the uulti-party protocol problems addressed in omplexity-based eryporgraphy during the last 10 yeass. It scually is a completenese chearam for th Such completeness theorem is optimal in the sens that, it the majority of the playen is not honest,
some prococol probiems have no efficient solution [S]

1. Introduction

Before discussing how to "make playahle" Before discussing how to "make playable" senoral same with incomplew infermayon (which
we do in section 6) let us address the problem of making playable a special class of games, the Turin nechine sames ($7 m$-gamee for short).

Informally, n paries, respectively and indivi
aly owaing secrect inputs z_{1}, x_{n} would like to ally owaing secret inputs z_{1}, \ldots, x_{0}, would like

 Trowision no copy withoul fee all or prato of this matetrial is grantued

1987 ACM 0-89791-221-7/87/0006-0218 754
correctiy run a given Turing macbine M on these x's while keeping the maximum possible privac \Rightarrow, x_{i} 's than it is already contained in the value y itself For instance, if M computes the sum or the z_{i} 's, every single player should not be able to learn more than the sum of the inputs of the other parties.
Herc M may very well be a probabilistic Turing machine. In this case, all playera want to aspee on single string y, seiected with the right probability distribution, ss M 's output.
The correctuess and privecy constraint of a Tm-game can be sasily met with the help of an extra, crusted party P. Each player i simply gives
his secret input x_{i} to $P . P$ will privately run the prescribed Turing machine, M, on chese inputes and publieally announce M 's output Making a Tm game playable essentially means that the correctnesi and privacy constraints can be saisfied by the
players themselves, wihout invoking any extrater players themselves, widhout invoking any ext
party. Proving that T_{m} gammes are playable retain most of the favor and difificulties of our general heorem.
2. Preliminary Definitions
2.1 Notation and Conventions for Probabilistic Algorithms.

We emphasize the number of inputs received by an algorithm as follows. In algorithm A receives only one input we write "A()" is it exeives and so on

Rer we will stand for "random raciable"; in this

Classic GMW Protocol

How to run any program...

For parties that are honest but curious (semi-honest)

1-out-of-2 Oblivious Transfer

Receiver
m_{0}, m_{1}

Sender

Receiver

Sender

Receiver

Receiver

$$
m_{0}, m_{1} \quad b \in\{0,1\}
$$

Sender

Receiver

OT is a standard cryptographic primitive, and there are many protocols that implement it

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

Fact: $\{\wedge, \oplus, 1\}$ is a complete Boolean basis.

For any Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, there exists a Boolean circuit over $\{\wedge, \oplus, 1\}$ that computes f.

I.e., Boolean circuits can compute any bounded function

GMW Protocol

Real World

Third Party

GMW Protocol
Hint: Use a lot of Oblivious Transfer
Real World

Step 1 of GMW:

Express program F as a Boolean circuit C
a, b

a, b

a, b

a, b

a, b

a, b

XOR Secret Shares

The XOR secret sharing of a bit x is a pair of bits $\left\langle x_{0}, x_{1}\right\rangle$ where P_{0} holds x_{0} and P_{1} holds
x_{1}, and where $x_{0} \oplus x_{1}=x$

XOR Secret Shares

The XOR secret sharing of a bit x is a pair of bits $\left\langle x_{0}, x_{1}\right\rangle$ where P_{0} holds x_{0} and P_{1} holds x_{1}, and where $x_{0} \oplus x_{1}=x$

We sometimes denote such a pair by $[x]$

XOR Secret Shares

The XOR secret sharing of a bit x is a pair of bits $\left\langle x_{0}, x_{1}\right\rangle$ where P_{0} holds x_{0} and P_{1} holds x_{1}, and where $x_{0} \oplus x_{1}=x$

We sometimes denote such a pair by $[x]$
Intuition: P_{0} 's share x_{0} acts as a mask, hiding x from P_{1} (and vice versa)
a, b

a, b

a, b

Each party in its head maintains a local copy of the circuit, placing its shares on the wires

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares? How do we "decrypt" output shares?

Where do input shares come from?

Goal: put $[x]$ on the input wire

x

Where do input shares come from?

Goal: put $[x]$ on the input wire

$r \stackrel{\$}{\leftarrow}\{0,1\}$

Where do input shares come from?

Goal: put $[x]$ on the input wire

$r \stackrel{\$}{\leftarrow}\{0,1\}$

$$
x \bigoplus r
$$

Where do input shares come from?

Goal: put $[x]$ on the input wire

$r \stackrel{\$}{\leftarrow}\{0,1\}$

$$
x \bigoplus r
$$

How do we XOR two shares?

Goal: given gate input wires holding $[x],[y]$,

 put $[x \oplus y]$ on the gate output

How do we XOR two shares?

Goal: given gate input wires holding $[x],[y]$,

 put $[x \oplus y]$ on the gate output

How do we XOR two shares?

Goal: given gate input wires holding $[x],[y]$,

 put $[x \oplus y]$ on the gate output

How do we "decrypt" output shares?

Goal: given wire holding $[x]$, reveal x to each party

How do we "decrypt" output shares?

Goal: given wire holding $[x]$, reveal x to each party

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?
How do we "decrypt" output shares?

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

$$
\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right)
$$

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

$$
\begin{gathered}
\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right) \\
=\left(x_{0} \wedge y_{0}\right) \oplus\left(x_{0} \wedge y_{1}\right) \oplus\left(x_{1} \wedge y_{0}\right) \oplus\left(x_{1} \wedge y_{1}\right)
\end{gathered}
$$

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party learns $x \wedge y$

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party
$r \stackrel{\$}{\leftarrow}\{0,1\}$

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party

$\langle r, r \oplus(x \wedge y)\rangle=[x \wedge y]$
$r \oplus(x \wedge y)$

How do we AND two shares?
Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

$$
r \stackrel{\$}{\leftarrow}\{0,1\} \quad s \stackrel{\$}{\leftarrow}\{0,1\}
$$

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

$$
r \stackrel{\$}{\leftarrow}\{0,1\} \quad s \stackrel{\$}{\leftarrow}\{0,1\}
$$

$$
\begin{gathered}
\left\langle r \oplus\left(s \oplus x_{1} \wedge y_{0}\right) \oplus\left(x_{0} \wedge y_{0}\right), s \oplus\left(r \oplus x_{0} \wedge y_{1}\right) \oplus\left(x_{1} \wedge y_{1}\right)\right\rangle \\
=[x \wedge y]
\end{gathered}
$$

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?
How do we "decrypt" output shares?

GMW Protocol

Propagate secret shares from input wires to output wires

Use OT to implement AND gates

Cost:
$O(|C|)$ OTs
Number of protocol rounds scales with the depth of C

Now we know how to run any program

What is the MPC field about?

More Parties
Stronger Security Notions
Improved Efficiency

