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A Quick Tour of Secure 
Multiparty Computation (MPC)
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“Learn nothing 
but the output”
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Confidentiality 
Integrity



 Secure Multiparty Computation

How can we use cryptography to emulate the 
existence of a trusted third party so that we can 
run arbitrary programs on joint private inputs?
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Secure Auctions
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Secure Auctions

Privacy-preserving advertising

Privacy-preserving studies

Privacy-preserving analytics

   (Secure Machine Learning)
Financial Fraud Detection
…and much more
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How to run any program…


For parties that are honest but 
curious (semi-honest)

Classic GMW Protocol
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OT is a standard cryptographic 
primitive, and there are many 
protocols that implement it



A Boolean Circuit is a directed acyclic graph where 
• Each node has fan-in two (and unbounded fan-out). 
• Each node has a label  or  
• There are two distinguished wires labelled 0 and 1
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Fact:  is a complete Boolean basis.{ ∧ , ⊕ ,1}

For any Boolean function , there exists a 
Boolean circuit over  that computes .

f : {0,1}n → {0,1}m

{ ∧ , ⊕ ,1} f

I.e., Boolean circuits can compute any bounded function
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Hint: Use a lot of Oblivious Transfer
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Step 1 of GMW:

Express program  as a Boolean circuit F C
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XOR Secret Shares

The XOR secret sharing of a bit  is a pair of 
bits  where  holds  and  holds 

, and where  

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x
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XOR Secret Shares

The XOR secret sharing of a bit  is a pair of 
bits  where  holds  and  holds 

, and where  

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x

Intuition: ’s share  acts as a mask, hiding 
 from  (and vice versa)

P0 x0
x P1

We sometimes denote such a pair by [x]
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Each party in its head maintains a local copy 
of the circuit, placing its shares on the wires

a, b c, d
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Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?


How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

a, b c, d
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x

Where do input shares come from?
Goal: put  on the input wire[x]
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Where do input shares come from?

r $← {0,1}

Goal: put  on the input wire[x]
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x

Where do input shares come from?

r $← {0,1}
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⊕
x0
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Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ⊕ y]

How do we XOR two shares?

⊕
x1

y1
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⊕
x0

y0

Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ⊕ y]

How do we XOR two shares?

⊕
x1

y1
x0 ⊕ y0 x1 ⊕ y1

XOR is “free”
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Goal: given wire holding , 
reveal  to each party

[x]
x

How do we “decrypt” output shares?

x0 x1
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Goal: given wire holding , 
reveal  to each party

[x]
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x0 x1
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∧
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x0
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Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?
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(x0 ⊕ x1) ∧ (y0 ⊕ y1)
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∧
x0
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Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)
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∧
x0

y0

Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

“Free”
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∧
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Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

OT
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Goal: given gate input bits , compute 
random secret share  s.t. neither party 

learns 

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y
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Goal: given gate input bits , compute 
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Goal: given gate input bits , compute 
random secret share  s.t. neither party 

learns 
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Goal: given gate input bits , compute 
random secret share  s.t. neither party 

learns 

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
r, r ⊕ x yr $← {0,1}

r ⊕ (x ∧ y)
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Goal: given gate input bits , compute 
random secret share  s.t. neither party 

learns 

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
r, r ⊕ x yr $← {0,1}

r ⊕ (x ∧ y)⟨r, r ⊕ (x ∧ y)⟩ = [x ∧ y]
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∧
x0

y0

Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

r $← {0,1} s $← {0,1}

OT
r, r ⊕ x0 y1

r ⊕ (x0 ∧ y1)

OT
y0

s ⊕ (x1 ∧ y0)

s, s ⊕ x1
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Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

r $← {0,1} s $← {0,1}

OT
r, r ⊕ x0 y1

r ⊕ (x0 ∧ y1)

OT
y0

s ⊕ (x1 ∧ y0)

s, s ⊕ x1

⟨r ⊕ (s ⊕ x1 ∧ y0) ⊕ (x0 ∧ y0), s ⊕ (r ⊕ x0 ∧ y1) ⊕ (x1 ∧ y1)⟩

= [x ∧ y]
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Where do input shares come from?

How do we XOR two shares?
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GMW Protocol

Propagate secret shares from input 
wires to output wires

Use OT to implement AND gates

Cost:

   OTs

  Number of protocol rounds scales with the depth of 
O( |C | )

C
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What is the MPC field about?

More Parties

Stronger Security Notions

Improved Efficiency

Now we know how 
to run any program


