

Lecture 23-24: Nakamoto Consensus

CS 539 / ECE 526 Distributed Algorithms

Announcements

- PS 5 (last PS) graded, regrade due today
- Final exam
 - Wednesday May 3rd, Canvas, online
 - 90 min within 9 am to 11 am
 - Covers all materials, focus on second half
- Next Monday: final review, submit questions
- ICES evaluation

Bitcoin

- Whitepaper by Nakamoto in late 2008
- Deployed in January 2009
- An ingenious and unconventional solution to BFT replication
 - A permissionless model
 - Proof of work (PoW) and longest chain
- An ingenious application of BFT replication

Bitcoin Transactions

Values = blocks of transactions

- "I, Alice, pay Bob \$10" signed by Alice
- "I, pk_A, pay pk_B \$10" signed with sk_A
- Agreement on transaction history == currency

Bitcoin Mining

- Proof-of-work mining: solve hard puzzles
- What are the puzzles?

Puzzle

nonce

Proof-of-Work (PoW)

Bitcoin Mining

- A succinct representation of the ledger
- Puzzle = Hash(prev block) || Hash(new txs) || pk

Bitcoin Protocol

- Mine on longest chain & send to all (via a peerto-peer network)
- Upon mining or receiving a new longest chain, send to all

Bitcoin Protocol

- Mine on longest chain & send to all
- Upon having a new longest chain, send to all
- Commit blocks buried deep

Why does this work?

- Intuitively, a unique longest chain keeps growing faster than all other chains
- Hence, once a block is buried deep, it is unlikely to be "forked off"

• Rigorous proof (sketch) next

Model

- Honest and malicious. No incentives.
- Synchrony: known delay bound Δ
 - Bitcoin cannot handle unbounded delay (partial synchrony or asynchrony)
- Ideal memoryless mining with stable rates
- Attack a target transaction that shows up at a time without adversary's influence

Ideal Memoryless Mining

- Block production follows a Poisson process with rate $\boldsymbol{\lambda}$

- Stable in this work (fluctuate in practice)

- Let T be the time to solve a puzzle $Pr[T > t] = e^{-\lambda t}$ (exponential distribution)
- ρ : ratio of honest mining rate - ρ > 0.5 (honest majority)

Attacker's Goal

- Attack a target transaction tx that appears at time $\boldsymbol{\tau}$
 - First, make some honest node finalize a block containing tx
 - Then, make another honest node finalize a different block at the same height
- The attacker cannot control τ (why?)

Intuition and Challenges

 Intuition: honest mining power > malicious → honest chain grows fastest, adv can't keep up

- Challenge 1: due to network delay, honest nodes may work against each other
- Challenge 2: need to consider all possible strategies by the adversary

- Nakamoto only considered a specific strategy

Our Approach

- Challenge 1: due to network delay, honest nodes may work against each other
 - Step 1: assume they don't (magic model)
 - Step 3: reduce to magic model
- Challenge 2: need to consider all possible strategies by the adversary

- Step 2: find an optimal attack under magic model

Magic Model

- Every honest block is "aware" of all previous honest blocks
 - Essentially zero delay

Optimal Attack under Magic Model

- Before time τ , attempt to build a lead
 - i.e., a longer private chain

lead = 0

- Before time $\boldsymbol{\tau},$ attempt to build a lead
 - i.e., a longer private chain

- Before time τ , attempt to build a lead
 - i.e., a longer private chain

- Before time τ , attempt to build a lead
 - i.e., a longer private chain

- Before time τ , attempt to build a lead
 - i.e., a longer private chain

- Before time τ , attempt to build a lead
 - If overtaken, reset (lead = 0)

Optimal Attack under Magic Model

- Before time τ , attempt to build a lead
 - If overtaken, reset (lead = 0)
- After time τ , go all-in to mine a private chain without the target tx
- Attacker wins if private chain becomes longer after public chain finalizes tx
- Can prove this attack is optimal

- Attacker wins in three cases only:
 - 1. At time τ , lead L > k

- Attacker wins in three cases only:
 - 1. At time τ , lead L > k
 - 2. L <= k but private chain reaches k first

- Attacker wins in three cases only:
 - 1. At time τ , lead L > k
 - 2. L <= k but private chain reaches k first
 - L <= k and public chain reaches k first, but private chain eventually catches up

• Attacker wins in three cases only:

```
1. At time \tau, lead L > k

2. /L <= k but private chain reaches k first</li>
3. L <= k and public chain reaches k first,
but private chain eventually catches up

\overline{F}_{1}(k;p) + \sum_{i=1}^{k} P_{1}(i;p) \cdot \left(\overline{F}_{2}(k-i;2k+1-i,1-p) + \sum_{j=0}^{k-i} P_{2}(j;2k+1-i,1-p) \cdot \overline{F}_{1}(2k+1-2i-2j;p)\right)
                                                        \left(2+2\sqrt{\frac{p}{1-p}}\right)\left(4p(1-p)\right)^{k}
```

Reduce to Magic Model

- How can we make sure every honest block is "aware of" all previous honest blocks?
- Give "offending" honest blocks to adversary!

Reduce to Magic Model

• Pr[honest surviving] = Pr[honest] • Pr[lagging] = $\rho \cdot e^{-\lambda \Delta}$ (recall Pr[T > t] = $e^{-\lambda t}$)

- A factor of $e^{-\lambda\Delta}$ loss due to delay
 - Small if Δ is small compared to block interval $1/\lambda$

Proof Summary

• With 0 delay, prove private mining attack is optimal and calculate its success rate

– This step is precise

- With ∆ delay, give some honest blocks to adversary to reduce to zero delay
 - Small precision loss if Δ is small

Gaps to Practice

- Ignored difficulty adjustment
 - An adversary's private chain grows just as fast
 - Use greatest work instead of longest chain
- Incentives
 - Arguably, no node is truly honest
 - Selfish & profitable strategies exist but not pursued

Guidance to Practice

- How shall we tune Bitcoin parameters?
- Nakamoto picked very conservative/ slow parameters with orphan rate < 1%

- Is it really a bad choice?

- Shall we increase block size or block rate?
 - Same effect for throughput
 - Higher block rate gives better latency
- In fact, worth decreasing block size (Ethereum)
 - Cannot push this indefinitely, will eventually lead to too many "orphans" and break security

Many More Interesting Questions

- Timing model?
- Signatures?

- Latency?
- Communication?
 - Does peer-to-peer help or hurt?

- Roles of PoW?
- What does it mean to be permissionless?

Model of Bitcoin

- Timing model
 - Secure under synchrony
 - Insecure under partial synchrony or asynchrony
 - Some model in between? Major open problem

- Authentication
 - Did not use signatures in its consensus
 - Yet overcome the 1/3 fault bound

Efficiency of Bitcoin

- Very high latency
 - For exp(-k) error probability, wait for k blocks
 - Blocks arrive slowly
- Communication: O(ndB)
 - n: number of nodes
 - d: number of neighbors
 - B: block size (1MB)
 - Without peer-to-peer, it would have been O(n²)
- Enormous energy efficiency

Bitcoin Energy Consumption

BitcoinEnergyConsumption.com

Roles of PoW

Sybil resistance

- Leader election
 Rate limiting
- Make equivocation hard
 Somewhat resembles signatures

Summary

- Nakamoto consensus is a synchronous (!?)
 Byzantine fault tolerant SMR
 - With rigorous proof
- New application of BFT
- New model: permissionless (and more)
- New technique: PoW & longest chain